Faces of Weight Polytopes and a Generalization of a Theorem of Vinberg

被引:0
作者
Apoorva Khare
Tim Ridenour
机构
[1] Yale University,Department of Mathematics
[2] Northwestern University,Department of Mathematics
来源
Algebras and Representation Theory | 2012年 / 15卷
关键词
Weak ; -face; Positive weak ; -face; Generalized Verma module; Polyhedron; Primary 17B20; Secondary 17B10;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is motivated by the study of graded representations of Takiff algebras, cominuscule parabolics, and their generalizations. We study certain special subsets of the set of weights (and of their convex hull) of the generalized Verma modules (or GVM’s) of a semisimple Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document}. In particular, we extend a result of Vinberg and classify the faces of the convex hull of the weights of a GVM. When the GVM is finite-dimensional, we answer a natural question that arises out of Vinberg’s result: when are two faces the same? We also extend the notion of interiors and faces to an arbitrary subfield \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document} of the real numbers, and introduce the idea of a weak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}–face of any subset of Euclidean space. We classify the weak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}–faces of all lattice polytopes, as well as of the set of lattice points in them. We show that a weak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}–face of the weights of a finite-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g} $\end{document}–module is precisely the set of weights lying on a face of the convex hull.
引用
收藏
页码:593 / 611
页数:18
相关论文
共 6 条
  • [1] Chari V(2009)Ideals in parabolic subalgebras of simple Lie algebras Contemp. Math. 490 47-60
  • [2] Dolbin RJ(2009)A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras Adv. Math. 220 1193-1221
  • [3] Ridenour T(1991)On certain commutative subalgebras of a universal enveloping algebra Math. USSR Izv. 36 1-22
  • [4] Chari V(undefined)undefined undefined undefined undefined-undefined
  • [5] Greenstein J(undefined)undefined undefined undefined undefined-undefined
  • [6] Vinberg EB(undefined)undefined undefined undefined undefined-undefined