Local modulation of temperature has emerged as a new mechanism for regulation of molecular transport through nanopores. Predicting the effect of such modulations on nanopore transport requires simulation protocols capable of reproducing non-uniform temperature gradients observed in experiment. Conventional molecular dynamics (MD) method typically employs a single thermostat for maintaining a uniform distribution of temperature in the entire simulation domain, and, therefore, can not model local temperature variations. In this article, we describe a set of simulation protocols that enable modeling of nanopore systems featuring non-uniform distributions of temperature. First, we describe a method to impose a temperature gradient in all-atom MD simulations based on a boundary-driven non-equilibrium MD protocol. Then, we use this method to study the effect of temperature gradient on the distribution of ions in bulk solution (the thermophoretic effect). We show that DNA nucleotides exhibit differential response to the same temperature gradient. Next, we describe a method to directly compute the effective force of a thermal gradient on a prototypical biomolecule—a fragment of double-stranded DNA. Following that, we demonstrate an all-atom MD protocol for modeling thermophoretic effects in solid-state nanopores. We show that local heating of a nanopore volume can be used to regulate the nanopore ionic current. Finally, we show how continuum calculations can be coupled to a coarse-grained model of DNA to study the effect of local temperature modulation on electrophoretic motion of DNA through plasmonic nanopores. The computational methods described in this article are expected to find applications in rational design of temperature-responsive nanopore systems.
机构:
Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, NetherlandsDelft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
Kowalczyk, Stefan W.
Grosberg, Alexander Y.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Phys, New York, NY 10003 USA
NYU, Ctr Soft Matter Res, New York, NY 10003 USADelft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
Grosberg, Alexander Y.
论文数: 引用数:
h-index:
机构:
Rabin, Yitzhak
Dekker, Cees
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, NetherlandsDelft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
机构:
Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, Tokyo 1528550, JapanXidian Univ, Sch Mechanoelect Engn, Key Lab Elect Equipment Struct Design, Minist Educ, Xian 710071, Peoples R China
机构:
Ind Res Ltd, MacDiarmid Inst Adv Mat & Nanotechnol, Lower Hutt 5040, New ZealandInd Res Ltd, MacDiarmid Inst Adv Mat & Nanotechnol, Lower Hutt 5040, New Zealand
Willmott, G. R.
Smith, B. G.
论文数: 0引用数: 0
h-index: 0
机构:
Ind Res Ltd, Auckland 1140, New ZealandInd Res Ltd, MacDiarmid Inst Adv Mat & Nanotechnol, Lower Hutt 5040, New Zealand
机构:
Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, NetherlandsDelft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
Kowalczyk, Stefan W.
Grosberg, Alexander Y.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Phys, New York, NY 10003 USA
NYU, Ctr Soft Matter Res, New York, NY 10003 USADelft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
Grosberg, Alexander Y.
论文数: 引用数:
h-index:
机构:
Rabin, Yitzhak
Dekker, Cees
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, NetherlandsDelft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands