Non-parametric estimation of the diffusion coefficient from noisy data

被引:2
|
作者
Emeline Schmisser
机构
[1] Université Lille 1,Laboratoire Paul Painlevé
关键词
Diffusion coefficient; Model selection; Noisy data; Non-parametric estimation; Stationary distribution; Primary 62G08; Secondary 62M05;
D O I
10.1007/s11203-012-9072-8
中图分类号
学科分类号
摘要
We consider a diffusion process (Xt)t ≥ 0, with drift b(x) and diffusion coefficient σ(x). At discrete times tk = kδ for k from 1 to M, we observe noisy data of the sample path, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y_{k\delta}=X_{k\delta}+\varepsilon_{k}}$$\end{document} . The random variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left(\varepsilon_{k}\right)}$$\end{document} are i.i.d, centred and independent of (Xt). The process (Xt )t ≥ 0 is assumed to be strictly stationary, β-mixing and ergodic. In order to reduce the noise effect, we split data into groups of equal size p and build empirical means. The group size p is chosen such that Δ = pδ is small whereas Mδ is large. Then, the diffusion coefficient σ2 is estimated in a compact set A in a non-parametric way by a penalized least squares approach and the risk of the resulting adaptive estimator is bounded. We provide several examples of diffusions satisfying our assumptions and we carry out various simulations. Our simulation results illustrate the theoretical properties of our estimators.
引用
收藏
页码:193 / 223
页数:30
相关论文
共 50 条