On the Mean-Field Spherical Model

被引:0
作者
Michael Kastner
Oliver Schnetz
机构
[1] Universität Bayreuth,Physikalisches Institut, Lehrstuhl für Theoretische Physik I
[2] Friedrich-Alexander-Universität Erlangen-Nürnberg,Institut für Theoretische Physik III
来源
Journal of Statistical Physics | 2006年 / 122卷
关键词
Phase transitions; Spherical model; Microcanonical; Canonical; Ensemble nonequivalence; Partial equivalence; Fisher zeros of the partition function; ℝℙ; σ-model; Mixed isovector/isotensor σ-model; Model equivalence; Topological approach;
D O I
暂无
中图分类号
学科分类号
摘要
Exact solutions are obtained for the mean-field spherical model, with or without an external magnetic field, for any finite or infinite number N of degrees of freedom, both in the microcanonical and in the canonical ensemble. The canonical result allows for an exact discussion of the loci/ of the Fisher zeros of the canonical partition function. The microcanonical entropy is found to be nonanalytic for arbitrary finite N. The mean-field spherical model of finite size N is shown to be equivalent to a mixed isovector/isotensor σ-model on a lattice of two sites. Partial equivalence of statistical ensembles is observed for the mean-field spherical model in the thermodynamic limit. A discussion of the topology of certain state space submanifolds yields insights into the relation of these topological quantities to the thermodynamic behavior of the system in the presence of ensemble nonequivalence.
引用
收藏
页码:1195 / 1214
页数:19
相关论文
共 50 条
  • [21] Continuum limit of mean-field partition functions
    Williams, Mobolaji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (02)
  • [22] Dynamical mean-field theory for correlated electrons
    Vollhardt, Dieter
    ANNALEN DER PHYSIK, 2012, 524 (01) : 1 - 19
  • [23] Mean-field theory of meta-learning
    Plewczynski, Dariusz
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [24] Mean-Field Coupling of Identical Expanding Circle Maps
    Selley, Fanni
    Balint, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (04) : 858 - 889
  • [25] Eigenspace Stability Conditions in Mean-Field Replica Theories
    Landy, Jonathan
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (01) : 62 - 74
  • [26] Replica symmetry in upper tails of mean-field hypergraphs
    Mukherjee, Somabha
    Bhattacharya, Bhaswar B.
    ADVANCES IN APPLIED MATHEMATICS, 2020, 119
  • [27] Dynamic mean-field theory for continuous random networks
    Zuniga-Galindo, W. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (12)
  • [28] Mixing Times for the Mean-Field Blume-Capel Model via Aggregate Path Coupling
    Kovchegov, Yevgeniy
    Otto, Peter T.
    Titus, Mathew
    JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (05) : 1009 - 1027
  • [29] Block Copolymers in High-Frequency Electric Field: Mean-Field Approximation
    Erukhimovich, I. Ya
    Kriksin, Yu A.
    Kudryavtsev, Y., V
    POLYMER SCIENCE SERIES A, 2022, 64 (02) : 121 - 127
  • [30] MEAN-FIELD SPECIFIC-HEAT OF CUGEO3
    KUO, YK
    FIGUEROA, E
    BRILL, JW
    SOLID STATE COMMUNICATIONS, 1995, 94 (05) : 385 - 389