On the Mean-Field Spherical Model

被引:0
|
作者
Michael Kastner
Oliver Schnetz
机构
[1] Universität Bayreuth,Physikalisches Institut, Lehrstuhl für Theoretische Physik I
[2] Friedrich-Alexander-Universität Erlangen-Nürnberg,Institut für Theoretische Physik III
来源
Journal of Statistical Physics | 2006年 / 122卷
关键词
Phase transitions; Spherical model; Microcanonical; Canonical; Ensemble nonequivalence; Partial equivalence; Fisher zeros of the partition function; ℝℙ; σ-model; Mixed isovector/isotensor σ-model; Model equivalence; Topological approach;
D O I
暂无
中图分类号
学科分类号
摘要
Exact solutions are obtained for the mean-field spherical model, with or without an external magnetic field, for any finite or infinite number N of degrees of freedom, both in the microcanonical and in the canonical ensemble. The canonical result allows for an exact discussion of the loci/ of the Fisher zeros of the canonical partition function. The microcanonical entropy is found to be nonanalytic for arbitrary finite N. The mean-field spherical model of finite size N is shown to be equivalent to a mixed isovector/isotensor σ-model on a lattice of two sites. Partial equivalence of statistical ensembles is observed for the mean-field spherical model in the thermodynamic limit. A discussion of the topology of certain state space submanifolds yields insights into the relation of these topological quantities to the thermodynamic behavior of the system in the presence of ensemble nonequivalence.
引用
收藏
页码:1195 / 1214
页数:19
相关论文
共 50 条
  • [1] On the mean-field spherical model
    Kastner, M
    Schnetz, O
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (06) : 1195 - 1213
  • [2] Universality of the mean-field for the Potts model
    Basak, Anirban
    Mukherjee, Sumit
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (3-4) : 557 - 600
  • [3] Asymptotics of the Mean-Field Heisenberg Model
    Kirkpatrick, Kay
    Meckes, Elizabeth
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (01) : 54 - 92
  • [4] Free energy of the spherical mean field model
    Michel Talagrand
    Probability Theory and Related Fields, 2006, 134 : 339 - 382
  • [5] Energy landscape of the finite-size mean-field 2-spin spherical model and topology trivialization
    Mehta, Dhagash
    Hauenstein, Jonathan D.
    Niemerg, Matthew
    Simm, Nicholas J.
    Stariolo, Daniel A.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [6] Geometry and molecular dynamics of the Hamiltonian mean-field model in a magnetic field
    Araujo, Rubia
    Miranda Filho, L. H.
    Santos, Fernando A. N.
    Coutinho-Filho, M. D.
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [7] Swendsen-Wang algorithm on the mean-field Potts model
    Galanis, Andreas
    Stefankovic, Daniel
    Vigoda, Eric
    RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (01) : 82 - 147
  • [8] Baxter-Wu model according to a mean-field approach
    Cavalcante, M. F.
    Plascak, J. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 518 : 111 - 118
  • [9] Infrared Bound and Mean-Field Behaviour in the Quantum Ising Model
    Bjoernberg, Jakob E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (01) : 329 - 366
  • [10] Hard-core collisional dynamics in Hamiltonian mean-field model
    Melo, I
    Figueiredo, A.
    Rocha Filho, T. M.
    Miranda Filho, L. H.
    Elskens, Y.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 87