Uniqueness in law for a class of degenerate diffusions with continuous covariance

被引:0
作者
Gerard Brunick
机构
[1] University of California,Department of Statistics and Applied Probability
来源
Probability Theory and Related Fields | 2013年 / 155卷
关键词
Martingale problem; Stochastic differential equations; Degenerate parabolic operators; Homogeneous groups; 60H10; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We study the martingale problem associated with the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Lu(s, x) = \partial_su(s, x) + \frac{1}{2} \sum_{i,j=1}^{d_0} a^{ij}(s, x) \partial_{ij}u(s, x) + \sum_{i,j=1}^d B^{ij} x^j \partial_iu(s, x), $$\end{document}where d0 ≤  d. We show that the martingale problem is well-posed when the function a is continuous and strictly positive definite on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{d_0}}$$\end{document} and the matrix B takes a particular lower-diagonal, block form. We then localize this result to show that the martingale problem remains well-posed when B is replaced by a sufficiently smooth vector field whose Jacobian matrix satisfies a nondegeneracy condition.
引用
收藏
页码:265 / 302
页数:37
相关论文
共 36 条
[1]  
Athreya S.R.(2002)Degenerate stochastic differential equations and super-Markov chains Probab. Theory Relat. Fields 123 484-520
[2]  
Barlow M.T.(1987)Uniqueness for diffusions with piecewise constant coefficients Probab. Theory Relat. Fields 76 557-572
[3]  
Bass R.F.(2003)Degenerate stochastic differential equations with H ölder continuous coefficients and super-Markov chains Trans. Am. Math. Soc. 355 373-405
[4]  
Perkins E.A.(1993) solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients Commun. Partial Differ. Equ. 18 1735-1763
[5]  
Bass R.F.(1996)Commutators of singular integrals on homogeneous spaces Boll. Un. Mat. Ital. B (7) 10 843-883
[6]  
Pardoux É.(1996) estimates for some ultraparabolic operators with discontinuous coefficients J. Math. Anal. Appl. 200 332-354
[7]  
Bass R.F.(2011)Mimicking an Itô process by a solution of a stochastic differential equation Working Paper arXiv 1011-0111
[8]  
Perkins E.A.(1991)Uniqueness for some diffusions with discontinuous coefficients Ann. Probab. 19 525-537
[9]  
Bramanti M.(2008)Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients J. Funct. Anal. 254 109-153
[10]  
Cerutti M.C.(2006)New properties of convex functions in the Heisenberg group Trans. Am. Math. Soc. 358 2011-2055