Mean Curvature Flow of Singular Riemannian Foliations

被引:0
作者
Marcos M. Alexandrino
Marco Radeschi
机构
[1] Instituto de Matemática e Estatística,Mathematisches Institut
[2] Universidade de São Paulo,undefined
[3] WWU Münster,undefined
来源
The Journal of Geometric Analysis | 2016年 / 26卷
关键词
Mean curvature flow; Isometric action; Singular Riemannian foliation; Isoparametric foliation; 53C12; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Given a singular Riemannian foliation on a compact Riemannian manifold, we study the mean curvature flow equation with a regular leaf as initial datum. We prove that if the leaves are compact and the mean curvature vector field is basic, then any finite time singularity is a singular leaf, and the singularity is of type I. This generalizes previous results of Liu–Terng and Koike. In particular, our results can be applied to study the orbits of an isometric action by a compact Lie group.
引用
收藏
页码:2204 / 2220
页数:16
相关论文
共 50 条
  • [41] On mean curvature flow with driving force for symmetric motion with singular initial hypersurface
    Mori, Ryunosuke
    Zhang, Longjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (10) : 6137 - 6172
  • [42] The hyperbolic mean curvature flow
    LeFloch, Philippe G.
    Smoczyk, Knut
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (06): : 591 - 614
  • [43] Allen-Cahn approximation of mean curvature flow in Riemannian manifolds, II: Brakke's flows
    Pisante, Adriano
    Punzo, Fabio
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (05)
  • [44] Spacelike Mean Curvature Flow
    Lambert, Ben
    Lotay, Jason D.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1291 - 1359
  • [45] Mean curvature flow with obstacles
    Almeida, L.
    Chambolle, A.
    Novaga, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 667 - 681
  • [46] The mean curvature flow on solvmanifolds
    Arroyo, Romina M.
    Ovando, Gabriela P.
    Perales, Raquel
    Saez, Mariel
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [47] Singularities of mean curvature flow
    Yuanlong Xin
    Science China Mathematics, 2021, 64 : 1349 - 1356
  • [48] Width and mean curvature flow
    Colding, Tobias H.
    Minicozzi, William P., II
    GEOMETRY & TOPOLOGY, 2008, 12 : 2517 - 2535
  • [49] On mean curvature flow with forcing
    Kim, Inwon
    Kwon, Dohyun
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (05) : 414 - 455
  • [50] Spacelike Mean Curvature Flow
    Ben Lambert
    Jason D. Lotay
    The Journal of Geometric Analysis, 2021, 31 : 1291 - 1359