Accretion onto a charged higher-dimensional black hole

被引:0
作者
M. Sharif
Sehrish Iftikhar
机构
[1] University of the Punjab,Department of Mathematics
来源
The European Physical Journal C | 2016年 / 76卷
关键词
Black Hole; Dark Energy; Event Horizon; Accretion Rate; Critical Radius;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner–Nordström black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document} in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge.
引用
收藏
相关论文
共 58 条
[1]  
Hoyle F(1939)undefined Proc. Camb. Philos. Soc. 35 405-undefined
[2]  
Lyttleton RA(1944)undefined Mon. Not. R. Astron. Soc. 104 273-undefined
[3]  
Bondi H(1952)undefined Mon. Not. R. Astron. Soc. 112 195-undefined
[4]  
Hoyle F(1972)undefined Astrophys. Space Sci. 15 153-undefined
[5]  
Bondi H(1973)undefined Astrophys. J. 180 531-undefined
[6]  
Michel FC(1973)undefined Astrophys. J. 185 69-undefined
[7]  
Shapiro SL(1974)undefined Astrophys. J. 189 343-undefined
[8]  
Shapiro SL(1999)undefined Phys. Rev. D 60 104043-undefined
[9]  
Shapiro SL(1999)undefined Teor. Fiz. 116 353-undefined
[10]  
Malec E(2011)undefined Gen. Relativ. Gravity 43 1061-undefined