Boundedness for a 3D chemotaxis–Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity

被引:0
作者
Yilong Wang
Xie Li
机构
[1] Southwest Petroleum University,School of Sciences
[2] China West Normal University,College of Mathematic and Information
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Chemotaxis; Stokes; Porous medium diffusion; Boundedness; Global existence; 35K57; 35Q92; 35A01; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the following chemotaxis–Stokes system nt+u·∇n=Δnm-∇·(nS(x,n,c)·∇c),x∈Ω,t>0,ct+u·∇c=Δc-nf(c),x∈Ω,t>0,ut=Δu+∇P+n∇ϕ,x∈Ω,t>0,∇·u=0,x∈Ω,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} n_t+u\cdot \nabla n=\Delta n^m-\nabla \cdot (nS(x,n,c)\cdot \nabla c), &{}\quad x\in \Omega ,\,\, t>0,\\ c_t+u\cdot \nabla c=\Delta c-nf(c),&{}\quad x\in \Omega , \,\,t>0,\\ u_t=\Delta u+\nabla P+n\nabla \phi ,&{}\quad x\in \Omega , \,\,t>0,\\ \nabla \cdot u=0,&{}\quad x\in \Omega , \,\,t>0\\ \end{array} \right. \end{aligned}$$\end{document}under no-flux boundary conditions in a bounded domain Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^{3}$$\end{document} with smooth boundary, where m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document}, ϕ∈W1,∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in W^{1,\infty }(\Omega )$$\end{document}, f and S are given functions with values in [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\,\infty )$$\end{document} and R3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3\times 3}$$\end{document}, respectively. Here S satisfies |S(x,n,c)|<S0(c)(1+n)-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S(x,n,c)|<S_0(c)(1+n)^{-\alpha }$$\end{document} with α≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0$$\end{document} and some nonnegative nondecreasing function S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document}. With the tensor-valued sensitivity S, this system does not possess energy-type functionals which seem to be available only when S is a scalar function. We can establish a priori estimation to overcome this difficulty and explore a relationship between m and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, i.e., m+α>76\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+\alpha >\frac{7}{6}$$\end{document}, which insures the global existence of bounded weak solution. Our result covers completely and improves the recent result by Wang and Cao (Discrete Contin Dyn Syst Ser B 20:3235–3254, 2015) which asserts, just in the case m=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1$$\end{document}, the global existence of solutions, but without boundedness, and that by Winkler (Calc Var Partial Differ Equ 54:3789–3828, 2015) which only involves the case of α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document} and requires the convexity of the domain.
引用
收藏
相关论文
共 82 条
[1]  
Bellomo N(2015)Towards a mathematical theory of Keller–Segel models of pattern formation in biological tissues Math. Models Methods Appl. Sci. 25 1663-1763
[2]  
Bellouquid A(2014)Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation Nonlinearity 27 1899-1913
[3]  
Tao Y(2012)Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions J. Differ. Equ. 252 5832-5851
[4]  
Winkler M(2015)New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models J. Differ. Equ. 258 2080-2113
[5]  
Cao X(2013)Existence of smooth solutions to coupled chemotaxis-fluid equations Discrete Contin. Dyn. Syst. Ser. A 33 2271-2297
[6]  
Ishida S(2014)Global Existence and temporal decay in Keller–Segel models coupled to fluid equations Commun. Partial Differ. Equ. 39 1205-1235
[7]  
Cieślak T(2010)Global solutions to the coupled chemotaxis-fluid equations Commun. Partial Differ. Equ. 35 1635-1673
[8]  
Stinner C(2014)A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion Int. Math. Res. Not. 2014 1833-1852
[9]  
Cieślak T(2010)Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior Discrete Contin. Dyn. Syst. Ser. A 28 1437-1453
[10]  
Stinner C(2004)Self-concentration and large-scale coherence in bacterial dynamics Phys. Rev. Lett. 93 098103-1-4