An approximation algorithm for stochastic multi-level facility location problem with soft capacities

被引:0
作者
Chenchen Wu
Donglei Du
Yue Kang
机构
[1] Tianjin University of Technology,College of Science
[2] University of New Brunswick,Faculty of Business Administration
[3] Beijing University of Technology,Department of Operations Research and Scientific Computing
来源
Journal of Combinatorial Optimization | 2022年 / 44卷
关键词
Multi-level facility location; Approximation algorithm; Uncertainty; 90C27; 68W25; 90C05;
D O I
暂无
中图分类号
学科分类号
摘要
Facility location problem is one of the most important problems in the combinatorial optimization. The multi-level facility location problem and the facility location with capacities are important variants for the classical facility location problem. In this work, we consider the multilevel facility location problem with soft capacities in the uncertain scenario. The uncertainty setting means the location process is stochastic. We consider a two-stage model. The soft-capacities setting means each facility has multiple capacities by paying multiple opening cost. The multi-level setting means the client needs to connect to a path. We propose a bifactor (1/α,6/(1-2α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (1/\alpha ,6/(1-2\alpha ) )$$\end{document}-approximation algorithm for the stochastic multi-level facility location problem (SMLFLP), where α∈(0,0.5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha \in (0,0.5) $$\end{document} is a given constant. Then, we reduce the stochastic multi-level facility location problem with soft capacities to SMLFLP. The reduction implies a 1/α+6/(1-2α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( 1/\alpha + 6/(1-2\alpha ) \right) $$\end{document}-approximation algorithm. The ratio is 14.9282 when setting α=0.183\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha = 0.183 $$\end{document}.
引用
收藏
页码:1680 / 1692
页数:12
相关论文
共 49 条
[1]  
Arya V(2004)Local search heuristics for SIAM J Comput 33 544-562
[2]  
Garg N(2017)-median and facility location problem SIAM J Comput 46 272-306
[3]  
Khandekar R(2004)LP-based algorithms for capacitated facility location SIAM J Discret Math 18 207-217
[4]  
Meyerson A(2010)Improved combinatorial approximation algorithms for the SIAM J Comput 39 2212-2231
[5]  
Munagala K(2017)-level facility location problem ACM Trans Algorithms 13 737-756
[6]  
Pandit V(2003)An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem SIAM J Comput 33 1-25
[7]  
An HC(2010)An improved approximation for Discret Appl Math 158 453-460
[8]  
Singh M(2003)-median, and positive correlation in budgeted optimization J ACM 50 795-824
[9]  
Svensson O(2001)Improved approximation algorithms for the uncapacitated facility location problem J ACM 48 274-296
[10]  
Ageev AA(2016)A new approximation algorithm for the multilevel facility location problem ACM Trans Algorithms 13 1-25