On Locally Finite Subgroups in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \operatorname{Lim}(N) $\end{document}

被引:0
作者
N. M. Suchkov
A. A. Shlepkin
机构
[1] Siberian Federal University,
关键词
group; limited permutation; locally finite group; regular representation; 512.542;
D O I
10.1134/S0037446623060150
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G $\end{document} be the group of all limited permutations of the naturals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ N $\end{document}. We prove that every countable locally finite group is isomorphic to a subgroup in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G $\end{document}.
引用
收藏
页码:1439 / 1442
页数:3
相关论文
共 7 条
[1]  
Ado ID(1945)On subgroups of the countable symmetric group C. R. (Doklady) Acad. Sci. URSS 50 15-17
[2]  
Suchkov NM(2010)On groups of limited permutations J. Siberian Federal Univ. Math. Phys. 3 262-266
[3]  
Suchkova NG(2020)On subgroups of group Sib. Electr. Math. Reports 17 208-217
[4]  
Sozutov AI(1959)Some constructions for locally finite groups J. London Math. Soc. 34 305-319
[5]  
Suchkov NM(undefined)undefined undefined undefined undefined-undefined
[6]  
Suchkova NG(undefined)undefined undefined undefined undefined-undefined
[7]  
Hall P(undefined)undefined undefined undefined undefined-undefined