Finite temperature one-point functions in non-diagonal integrable field theories: the sine-Gordon model

被引:0
作者
F. Buccheri
G. Takács
机构
[1] Universidade Federal do Rio Grande do Norte,International Institute of Physics
[2] MTA-BME “Momentum” Statistical Field Theory Research Group,Department of Theoretical Physics
[3] Budapest University of Technology and Economics,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
Exact S-Matrix; Integrable Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study the finite-temperature expectation values of exponential fields in the sine-Gordon model. Using finite-volume regularization, we give a low-temperature expansion of such quantities in terms of the connected diagonal matrix elements, for which we provide explicit formulas. For special values of the exponent, computations by other methods are available and used to validate our findings. Our results can also be interpreted as a further support for a previous conjecture about the connection between finite- and infinite-volume form factors valid up to terms exponentially decaying in the volume.
引用
收藏
相关论文
共 74 条
[1]  
Leclair A(1999)Finite temperature correlation functions in integrable QFT Nucl. Phys. B 552 624-undefined
[2]  
Mussardo G(2001)Finite temperature expectation values of local fields in the sinh-Gordon model Nucl. Phys. B 612 391-undefined
[3]  
Lukyanov SL(2013)On one-point functions for sinh-Gordon model at finite temperature Nucl. Phys. B 875 166-undefined
[4]  
Negro S(2011)Mean values of local operators in highly excited Bethe states J. Stat. Mech. 1101 167-undefined
[5]  
Smirnov F(2008)Form-factors in finite volume I: form-factor bootstrap and truncated conformal space Nucl. Phys. B 788 209-undefined
[6]  
Pozsgay B(2008)Form factors in finite volume. II. Disconnected terms and finite temperature correlators Nucl. Phys. B 788 602-undefined
[7]  
Pozsgay B(2000)A comment on finite temperature correlations in integrable QFT Nucl. Phys. B 567 104435-undefined
[8]  
Takács G(2003)Haldane-gapped spin chains: exact low-temperature expansions of correlation functions Phys. Rev. B 68 311-undefined
[9]  
Pozsgay B(2006)Finite temperature correlation functions in integrable models: derivation of the large distance and time asymptotics from the form-factor expansion Nucl. Phys. B 739 100403-undefined
[10]  
Takács G(2008)Finite-temperature lineshapes in gapped quantum spin chains Phys. Rev. B 78 011-undefined