Sobolev Orthogonal Systems with Two Discrete Points and Fourier Series

被引:0
作者
M. G. Magomed-Kasumov
机构
[1] Daghestan Federal Research Centre of the Russian Academy of Sciences,
[2] Southern Mathematical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences,undefined
来源
Russian Mathematics | 2021年 / 65卷
关键词
discrete-continuous inner product; Sobolev inner product; Faber–Schauder system; Jacobi polynomials with negative parameters; Fourier series; uniform convergence; coincidence at the ends of the segment; completeness of Sobolev systems;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the properties of systems of functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi_1$\end{document} orthogonal with respect to a discrete-continuous Sobolev inner product of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle f,g \rangle_S = f(a)g(a)+f(b)g(b)+\int_a^b f'(t)g'(t)dt$\end{document}. In particular, we study the completeness of systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi_1$\end{document} in the Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W^1_{L^2}$\end{document}. Additionally, we analyze the properties of Fourier series with respect to systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi_1$\end{document}, and prove that these series converge uniformly to functions from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W^1_{L^2}$\end{document}.
引用
收藏
页码:47 / 55
页数:8
相关论文
共 38 条
[1]  
Marcellan F.(2015)On Sobolev orthogonal polynomials Expositiones Math. 33 308-352
[2]  
Xu Y.(2013)On the Pollard decomposition method applied to some Jacobi–Sobolev expansions Turk. J. Math. 37 934-948
[3]  
Marcellan F.(2019)Fourier series of Jacobi–Sobolev polynomials Integral Transfand. Spec. Funct. 30 334-346
[4]  
Quintana Y.(2010)Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer–Sobolev inner product J. Approxim. Theory 162 397-406
[5]  
Urieles A.(2013)Jacobi–Sobolev orthogonal polynomials: asymptotics and a Cohen type inequality J. Approxim. Theory 170 78-93
[6]  
Ciaurri O.(1991)On polynomials orthogonal with respect to certain Sobolev inner product J. Approx. Theory 65 151-175
[7]  
Minguez J.(2002)On Fourier series of a discrete Jacobi–Sobolev inner product J. Approx. Theory 117 1-22
[8]  
Fejzullahu B.Xh.(2003)Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product J. Approx. Theory 121 336-356
[9]  
Fejzullahu B.Xh.(2015)On linear summability methods of fourier series in polynomials orthogonal in a discrete Sobolev space Sib. Math. J. 56 339-351
[10]  
Marcellan F.(2009)On convergence and divergence of Fourier expansions with respect to some Gegenbauer–Sobolev type inner product Commun. Anal. Theory Cont. Fractions 16 1-11