Distribution of Eigenvalues of Real Symmetric Palindromic Toeplitz Matrices and Circulant Matrices

被引:0
作者
Adam Massey
Steven J. Miller
John Sinsheimer
机构
[1] Brown University,Department of Mathematics
[2] The Ohio State University,Department of Mathematics
来源
Journal of Theoretical Probability | 2007年 / 20卷
关键词
Random matrix theory; Toeplitz matrices; Distribution of eigenvalues;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the ensemble of real symmetric Toeplitz matrices, each independent entry an i.i.d. random variable chosen from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. Previous investigations showed that the limiting spectral measure (the density of normalized eigenvalues) converges weakly and almost surely, independent of p, to a distribution which is almost the standard Gaussian. The deviations from Gaussian behavior can be interpreted as arising from obstructions to solutions of Diophantine equations. We show that these obstructions vanish if instead one considers real symmetric palindromic Toeplitz matrices, matrices where the first row is a palindrome. A similar result was previously proved for a related circulant ensemble through an analysis of the explicit formulas for eigenvalues. By Cauchy’s interlacing property and the rank inequality, this ensemble has the same limiting spectral distribution as the palindromic Toeplitz matrices; a consequence of combining the two approaches is a version of the almost sure Central Limit Theorem. Thus our analysis of these Diophantine equations provides an alternate technique for proving limiting spectral measures for certain ensembles of circulant matrices.
引用
收藏
页码:637 / 662
页数:25
相关论文
共 50 条
  • [31] A matrix-less method to approximate the spectrum and the spectral function of Toeplitz matrices with real eigenvalues
    Ekstrom, Sven-Erik
    Vassalos, Paris
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 701 - 720
  • [32] Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions
    Cotirla, Luminita-Ioana
    Wanas, Abbas Kareem
    SYMMETRY-BASEL, 2022, 14 (07):
  • [33] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    Batalshchikov, A.
    Grudsky, S.
    Ramirez de Arellano, E.
    Stukopin, V.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 301 - 330
  • [34] Asymptotics of Eigenvectors of Large Symmetric Banded Toeplitz Matrices
    A. Batalshchikov
    S. Grudsky
    E. Ramírez de Arellano
    V. Stukopin
    Integral Equations and Operator Theory, 2015, 83 : 301 - 330
  • [35] The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices
    Murat Koloğlu
    Gene S. Kopp
    Steven J. Miller
    Journal of Theoretical Probability, 2013, 26 : 1020 - 1060
  • [36] TOEPLITZ MATRICES AND COMMUTING TRIDIAGONAL MATRICES
    PERLINE, R
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (02) : 321 - 326
  • [37] Asymptotics of eigenvalues of simple multiloop banded Toeplitz matrices of a special type
    S. A. Zolotykh
    V. A. Stukopin
    Mathematical Notes, 2017, 102 : 575 - 579
  • [38] Asymptotics of eigenvalues of simple multiloop banded Toeplitz matrices of a special type
    Zolotykh, S. A.
    Stukopin, V. A.
    MATHEMATICAL NOTES, 2017, 102 (3-4) : 575 - 579
  • [39] Computing eigenvalues of semi-infinite quasi-Toeplitz matrices
    D. A. Bini
    B. Iannazzo
    B. Meini
    J. Meng
    L. Robol
    Numerical Algorithms, 2023, 92 : 89 - 118
  • [40] Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form
    Barrera, M.
    Grudsky, S.
    Stukopin, V.
    Voronin, I.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (04)