Indepth combinatorial analysis of admissible sets for abstract argumentation

被引:0
作者
Cosmina Croitoru
Madalina Croitoru
机构
[1] Max Planck Institut for Informatics,
[2] LIRMM Montpellier,undefined
来源
Annals of Mathematics and Artificial Intelligence | 2022年 / 90卷
关键词
Acceptability; Graph theory; Dung semantics; Argumentation frameworks; 68T27; 68R10; 68Q25; 03B22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate, from a graph theoretical point of view, the notion of acceptability in Dung semantics for abstract argumentation frameworks. We advance the state of the art by introducing and analyzing combinatorial structures exploited for taming, in particular cases, the exponential blowout of acceptance algorithms. We conclude the paper by a series of observations allowing to deepen the intuition with respect to the practical use of Dung acceptance based semantics.
引用
收藏
页码:1139 / 1158
页数:19
相关论文
共 24 条
[1]  
Baroni P(2007)On principle-based evaluation of extension-based argumentation semantics Artif. Intell. 171 675-700
[2]  
Giacomin M(2011)Set-Rationalizable Choice functions and self- stability J. Econ. Theory 146 233-273
[3]  
Brandt F(2006)Semi-Stable Semantics Proc. of COMMA 2006, IOS Press 144 121-130
[4]  
Harrenstein P(2003)On decision problems related to the preferred semantics for argumentation frameworks Journal of Logic and Computation 13 377-403
[5]  
Caminada M(2015)A note on quasi-kernels in digraphs Inf. Process. Lett. 115 863-865
[6]  
Cayrol C(1996)Graph theoretical structures in logic programs and default theories Theoret Comput Sci 170 209-244
[7]  
Doutre S(1995)On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games Artif. Intell. 77 321-357
[8]  
Mengin J(2007)Computational properties of argument systems satisfying graph-theoretic constraints Artif. Intell. 171 701-729
[9]  
Croitoru C(2002)Coherence in finite argument systems Artif. Intell. 141 187-203
[10]  
Dimopoulos Y(2013)Parametric properties of ideal semantics Artif. Intell. 202 1-28