Superstrings, Knots, and Noncommutative Geometry in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E^{{\text{(}}\infty {\text{)}}} $$ \end{document} Space

被引:77
作者
M. S. El Naschie
机构
关键词
Field Theory; Elementary Particle; Quantum Field Theory; General Theory; Statistical Mechanic;
D O I
10.1023/A:1026679628582
中图分类号
学科分类号
摘要
Within a general theory, a probabilisticjustification for a compactification which reduces aninfinite-dimensional spacetime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E^{{\text{(}}\infty {\text{)}}} (n = \infty )$$ \end{document} to afour-dimensional one (DT = n = 4) isproposed. The effective Hausdorff dimension of this spaceis is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\langle \dim _{\text{H}} E^{{\text{(}}\infty {\text{)}}} \rangle = d_{\text{H}} = 4 + \Phi ^3 ,{\text{ where }}\Phi ^3 = 1/[4 + \Phi ^3 ]$$ \end{document} is a PV number and φ = (√5– 1)/2 is the golden mean. The derivation makes use of various results from knot theory,four-manifolds, noncommutative geometry, quasiperiodictiling, and Fredholm operators. In addition somerelevant analogies between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E^{{\text{(}}\infty {\text{)}}} $$ \end{document}, statistical mechanics, and Jones polynomials are drawn.This allows a better insight into the nature of theproposed compactification, the associated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E^{{\text{(}}\infty {\text{)}}} $$ \end{document} space, and thePisot–Vijayvaraghavan number 1/φ3= 4.236067977 representing its dimension. This dimensionis in turn shown to be capable of a naturalinterpretation in terms of the Jones knot invariant andthe signature of four-manifolds. This brings the work near to the context of Witten andDonaldson topological quantum field theory.
引用
收藏
页码:2935 / 2951
页数:16
相关论文
共 7 条
[1]  
El Naschie M. S.(1998)On the uncertainty of Cantorian geometry and the two slit experiment Chaos, Solitons and Fractals 9 517-529
[2]  
El Naschie M. S.(1998)Fredholm operators and the wave-particle duality Chaos, Solitons and Fractals 9 975-978
[3]  
El Naschie M. S.(1989)Penrose universe and Cantorian spacetime as a model for noncommutative quantum geometry Chaso, Solitons and Fractals 9 931-933
[4]  
El Naschie M. S.(1998)Knot theory in Chaos, Solitons and Fractials 9 1005-1007
[5]  
El Naschie M. S.(1998) and the Hausdorff dimension of a quantum path in ℰ Chaos, Solitons and Fractals 9 135-141
[6]  
Jones V. F. R.(1987)Branching polymers and the fractal Cantorian spacetime Annals of Mathematics 126 355-388
[7]  
Pisot C.(1946)Hecke algebra representation of braid groups and link polynomials Commentarii Mathematici Helvetici 19 153-160