Alternating Direction Method of Multipliers for ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}\hbox {-}\ell _{2}$$\end{document}-Regularized Logistic Regression Model

被引:0
作者
Yan-Qin Bai
Kai-Ji Shen
机构
[1] Shanghai University,Department of Mathematics
关键词
Classification problems; Logistic regression model ; Sparsity; Alternating direction method of multipliers; 90C10; 90C20; 49M20; 65K05;
D O I
10.1007/s40305-015-0090-2
中图分类号
学科分类号
摘要
Logistic regression has been proved as a promising method for machine learning, which focuses on the problem of classification. In this paper, we present an ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}\hbox {-}\ell _{2}$$\end{document}-regularized logistic regression model, where the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document}-norm is responsible for yielding a sparse logistic regression classifier and the ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2}$$\end{document}-norm for keeping better classification accuracy. To solve the ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}\hbox {-}\ell _{2}$$\end{document}-regularized logistic regression model, we develop an alternating direction method of multipliers with embedding limited-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. Furthermore, we implement our model for binary classification problems by using real data examples selected from the University of California, Irvine Machines Learning Repository (UCI Repository). We compare our numerical results with those obtained by the well-known LIBSVM and SVM-Light software. The numerical results show that our ℓ1-ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}\hbox {-}\ell _{2}$$\end{document}-regularized logistic regression model achieves better classification and less CPU Time.
引用
收藏
页码:243 / 253
页数:10
相关论文
共 20 条
[1]  
Neumaier A(1998)Solving ill-conditioned and singular linear systems: a tutorial on regularization SIAM Rev. 40 636-666
[2]  
Bai YQ(2015)Sparse proximal support vector machine with a specialized interior-point method J. Oper. Res. Soc. China. 3 1-15
[3]  
Zhu ZY(2006)Compressed sensing IEEE Trans. Inform. Theo. 52 1289-1306
[4]  
Yan WL(2013)New sdp models for protein homology detection with semi-supervised (svm) Optimization 62 561-572
[5]  
Donoho DL(2014)Consensus proximal support vector machine for classification problems with sparse solutions J. Oper. Res. Soc. China. 2 57-74
[6]  
Bai YQ(2005)Regularization and variable selection via the elastic net J. R. Stat. Soc. 67 301-320
[7]  
Niu BL(2011)Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends Mach. Learn. 3 1-122
[8]  
Chen Y(1992)On the Douglasrachford splitting method and the proximal point algorithm for maximal monotone operators Math. Program. 55 293-318
[9]  
Bai YQ(1998)Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control INFORMS J. Comput. 10 218-235
[10]  
Shen YJ(undefined)undefined undefined undefined undefined-undefined