Second order rectifiability of varifolds of bounded mean curvature

被引:0
|
作者
Mario Santilli
机构
[1] Universität Augsburg,Institut für Mathematik
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
.; 49Q15; 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the support of an m dimensional rectifiable varifold with a uniform lower bound on the density and bounded generalized mean curvature can be covered Hm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathscr {H}}^{m} $$\end{document} almost everywhere by a countable union of m dimensional submanifolds of class C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {C}}^{2} $$\end{document}. The C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {C}}^{2} $$\end{document}-regularity of the submanifolds is optimal.
引用
收藏
相关论文
共 50 条