Cocycle rigidity of abelian partially hyperbolic actions

被引:0
作者
Zhenqi Jenny Wang
机构
[1] Michigan State University,Department of Mathematics
来源
Israel Journal of Mathematics | 2018年 / 225卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Suppose G is a higher-rank connected semisimple Lie group with finite center and without compact factors. Let G = G or G = G ⋉ V, where V is a finite-dimensional vector space V. For any unitary representation (π,H) of G, we study the twisted cohomological equation π(a)f − λf = g for partially hyperbolic element a ∈ G and λ ∈ U(1), as well as the twisted cocycle equation π(a1)f − λ1f = π(a2)g − λ2g for commuting partially hyperbolic elements a1, a2 ∈ G. We characterize the obstructions to solving these equations, construct smooth solutions and obtain tame Sobolev estimates for the solutions. These results can be extended to partially hyperbolic flows in parallel.
引用
收藏
页码:147 / 191
页数:44
相关论文
共 30 条
[1]  
Clozel L.(2003)Démonstration de la conjecture τ Inventiones Mathematicae 151 297-328
[2]  
Cowling M.(1979)Sur les coefficients des représentations unitaires des groupes de Lie simples Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II 739 132-178
[3]  
Damjanović D.(2005)Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic Rk actions Discrete and Continuous Dynamical Systems 13 985-1005
[4]  
Katok A.(2010)Local rigidity of partially hyperbolic actions I. KAM method and Zk actions on the torus Annals of Mathematics 172 1805-1858
[5]  
Damjanović D.(2011)Local rigidity of homogeneous parabolic actions: I. A model case Journal of Modern Dynamics 5 203-235
[6]  
Katok A.(1980)Elliptic and subelliptic estimates for operators in an enveloping algebra Duke Mathematical Journal 47 819-833
[7]  
Damjanovic D.(1970)One-parameter groups generated by operators in an enveloping algebra Journal of Functional Analysis 6 218-236
[8]  
Katok A.(1978)Index of the exponential map of a semi-algebraic group American Journal of Mathematics 100 837-843
[9]  
Goodman R.(2007)On the classification of Cartan actions Geometric and Functional Analysis 17 468-490
[10]  
Goodman R. W.(1996)Cocycles’ stability for partially hyperbolic systems Mathematical Research Letters 3 191-210