Characterization of L. Schwartz’ convolutor and multiplier spaces OC′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O _{C}'$$\end{document} and OM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O _{M}$$\end{document} by the short-time Fourier transform

被引:0
作者
Christian Bargetz
Norbert Ortner
机构
[1] Universität Innsbruck,Institut für Mathematik
关键词
Temperate and (very) rapidly decreasing distributions and functions; Fourier transform; Short-time Fourier transform; Primary 42B10; Secondary 46F12;
D O I
10.1007/s13398-013-0144-4
中图分类号
学科分类号
摘要
A new definition of the short-time Fourier transform for temperate distributions is presented and its mapping properties are investigated. K.-H. Gröchenig and G. Zimmermann characterized the spaces S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S $$\end{document} and S′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S '$$\end{document} of rapidly decreasing functions and temperate distributions, respectively, by their short-time Fourier transform. Following an idea of G. Zimmermann, we give analogous characterizations of the spaces OC′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O _{C}'$$\end{document} and OM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O _{M}$$\end{document}. These spaces, being (PLB)-spaces, have a much more complicated structure than S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S $$\end{document} and S′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S '$$\end{document}, which is the reason why we have to use the technical machinery of L. Schwartz’ theory of vector-valued distributions.
引用
收藏
页码:833 / 847
页数:14
相关论文
共 8 条
[1]  
Gröchenig K(2001)Hardy’s theorem and the short-time Fourier transform of Schwartz functions J. London Math. Soc. (2) 63 205-214
[2]  
Zimmermann G(2004)Spaces of test functions via the STFT J. Funct. Spaces Appl. 2 25-53
[3]  
Gröchenig K(1954)Sur les espaces ( Summa Brasil. Math. 3 57-123
[4]  
Zimmermann G(1954)) et ( J. Analyse Math. 4 88-148
[5]  
Grothendieck A(1957)) I. Ann. Inst. Fourier, Grenoble 7 1-141
[6]  
Laurent S.(1958)Espaces de fonctions différentiables à valeurs vectorielles Ann. Inst. Fourier. Grenoble 8 1-209
[7]  
Schwartz L.(undefined)Théorie des distributions à valeurs vectorielles undefined undefined undefined-undefined
[8]  
Schwartz L(undefined)Théorie des distributions à valeurs vectorielles. II undefined undefined undefined-undefined