Conditions for Starlikeness of Multivalent Functions

被引:0
作者
Mamoru Nunokawa
Janusz Sokół
机构
[1] University of Gunma,Faculty of Mathematics and Natural Sciences
[2] University of Rzeszów,undefined
来源
Results in Mathematics | 2017年 / 72卷
关键词
Analytic functions; univalent functions; Ozaki’s condition; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
A function f(z) meromorphic in a domain D⊂C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\subset {\mathbb {C}}$$\end{document} is said to be p-valent in D if for each w the equation f(z)=w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=w$$\end{document} has at most p roots in D, where roots are counted in accordance with their multiplicity, and there is some v such that the equation f(z)=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=v$$\end{document} has exactly p roots in D. We prove some new sufficient conditions for functions to be p-valently starlike in the unit disc.
引用
收藏
页码:359 / 367
页数:8
相关论文
共 4 条
  • [1] Nunokawa M(1993)On the order of strongly starlikeness of strongly convex functions Proc. Jpn. Acad. Ser. A 69 234-237
  • [2] Nunokawa M(1987)On the theory of multivalent functions Tsukuba J. Math. 11 273-286
  • [3] Ruscheweyh S(1987)Coefficient conditions for starlike functions Glasg. Math. J. 29 141-142
  • [4] Warschawski S(1935)On the higher derivatives at the boundary in conformal mapping Trans. Am. Math. Soc. 38 310-340