Pseudodifferential operators of infinite order in spaces of tempered ultradistributions

被引:0
作者
Bojan Prangoski
机构
[1] University Ss. Cyril and Methodius,
来源
Journal of Pseudo-Differential Operators and Applications | 2013年 / 4卷
关键词
Ultradistributions; Pseudodifferential operators; 47G30; 46F05;
D O I
暂无
中图分类号
学科分类号
摘要
Specific global symbol classes and corresponding pseudodifferential operators of infinite order that act continuously on the space of tempered ultradistributions of Beurling and Roumieu type are constructed. For these classes, symbolic calculus is developed.
引用
收藏
页码:495 / 549
页数:54
相关论文
共 19 条
[1]  
Cappiello M(2003)Pseudodifferential parametrices of infinite order for SG-hyperbolic problems Rend. Sem. Mat. Univ. Pol. Torino 61 411-441
[2]  
Cappiello M(2004)Fourier integral operators of infinite order and applications to SG-hyperbolic equations Tsukuba J. Math. 28 311-361
[3]  
Cappiello M(2005)Fourier integral operators and Gelfand–Shilov spaces Recent Adv. Oper. Theory Appl. 160 81-100
[4]  
Cappiello M(2006)SG-pseudodifferential operators and Gelfand–Shilov spaces Rocky Mt. J. Math. 36 1117-1148
[5]  
Rodino L(1990)Fourier integral operators of infinite order on Gevrey spaces. Application to the Cauchy problem for certain hyperbolic operators J. Math. Kyoto Univ. 30 142-192
[6]  
Cattabriga L(2005)Pseudodifferential operators on nonquasianalytic classes of Beurling type Studia Math. 167 99-131
[7]  
Zanghirati L(1983)Opérateurs pseudodifférentiels et classes de Gevrey Commun. Partial Differ. Equ. 8 1277-1289
[8]  
Fernández C(1973)Ultradistributions I: structure theorems and a characterization J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 20 25-105
[9]  
Galbis A(1977)Ultradistributions II: the kernel theorem and ultradistributions with support in submanifold J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 24 607-628
[10]  
Jornet D(2007)Kernel theorem for the space of Beurling-Komatsu tempered ultradistributions Integr. Transform. Spec. Funct. 18 699-713