Discretization of the Ergodic Functional Central Limit Theorem

被引:0
|
作者
Gilles Pagès
Clément Rey
机构
[1] LPSM,CMAP, École Polytechnique
[2] Sorbonne Université,undefined
[3] Institut Polytechnique de Paris,undefined
来源
Journal of Theoretical Probability | 2023年 / 36卷
关键词
Ergodic theory; Markov processes; Invariant measures; Central limit theorem; Stochastic approximation; 60G10; 47A35; 60F05; 60J25; 60J35; 65C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the discretization of the ergodic Functional Central Limit Theorem (CLT) established by Bhattacharya (see Bhattacharya in Z Wahrscheinlichkeitstheorie Verwandte Geb 60:185–201, 1982) which states the following: Given a stationary and ergodic Markov process (Xt)t⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_t)_{t \geqslant 0}$$\end{document} with unique invariant measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} and infinitesimal generator A, then, for every smooth enough function f, (n1/21n∫0ntAf(Xs)ds)t⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n^{1/2} \frac{1}{n}\int _0^{nt} Af(X_s){\textrm{d}}s)_{t \geqslant 0}$$\end{document} converges in distribution towards the distribution of the process (-2⟨f,Af⟩νWt)t⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sqrt{-2 \langle f, Af \rangle _{\nu }} W_{t})_{t \geqslant 0}$$\end{document} with (Wt)t⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(W_{t})_{t \geqslant 0}$$\end{document} a Wiener process. In particular, we consider the marginal distribution at fixed t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=1$$\end{document}, and we show that when ∫0nAf(Xs)ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _0^{n} Af(X_s)ds$$\end{document} is replaced by a well chosen discretization of the time integral with order q (e.g. Riemann discretization in the case q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=1$$\end{document}), then the CLT still holds but with rate nq/(2q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{q/(2q+1)}$$\end{document} instead of n1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1/2}$$\end{document}. Moreover, our results remain valid when (Xt)t⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_t)_{t \geqslant 0}$$\end{document} is replaced by a q-weak order approximation (not necessarily stationary). This paper presents both the discretization method of order q for the time integral and the q-order ergodic CLT we derive from them. We finally propose applications concerning the first order CLT for the approximation of Markov Brownian diffusion stationary regimes with Euler scheme (where we recover existing results from the literature) and the second order CLT for the approximation of Brownian diffusion stationary regimes using Talay’s scheme (Talay in Stoch Stoch Rep 29:13–36, 1990) of weak order two.
引用
收藏
页码:2359 / 2402
页数:43
相关论文
共 50 条