A comparison of missing data procedures for addressing selection bias in HIV sentinel surveillance data

被引:0
作者
Marie Ng
Emmanuela Gakidou
Christopher JL Murray
Stephen S Lim
机构
[1] University of Washington,Institute for Health Metrics and Evaluation
来源
Population Health Metrics | / 11卷
关键词
Selection bias; Simulations; Missing data; Multiple imputation; Complete-case analysis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 93 条
[1]  
Gouws E(2008)Comparison of adult HIV prevalence from national population-based surveys and antenatal clinic surveillance in countries with generalised epidemics: implications for calibrating surveillance data Sex Transm Infect 84 i17-i23
[2]  
Mishra V(2001)Epidemiological analysis of the quality of HIV sero-surveillance in the world: how well do we track the epidemic? AIDS 15 1545-1554
[3]  
Fowler TB(2004)A global analysis of trends in the quality of HIV sero-surveillance Sex Transm Infect 80 i25-i30
[4]  
Walker N(2004)Estimating the global burden of HIV/AIDS: what do we really know about the HIV pandemic? Lancet 363 2180-2185
[5]  
Garcia-Calleja JM(2009)Advances and future directions in HIV surveillance in low-and middle-income countries Curr Opin HIV AIDS 4 253-259
[6]  
Heaton L(2006)Evidence for population level declines in adult HIV prevalence in Kenya Sex Transm Infect 82 i21-i26
[7]  
Asamoah-Odei E(1986)Interval Estimation from Multiply-Imputed Data: A Case Study Using Census Agriculture Industry Codes Journal of Official Statistics 3 375-387
[8]  
Poumerol G(2008)Impact of an intensive HIV prevention programme for female sex workers on HIV prevalence among antenatal clinic attenders in Karnataka state, south India: an ecological analysis AIDS 22 101-108
[9]  
Lazzari S(2001)Assessment of population-level effect of Avahan, an HIV-prevention initiative in India Lancet 378 1643-1652
[10]  
Ghys PD(2009)Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls BMJ 338 157-160