Stability properties and topology at infinity of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-minimal hypersurfaces

被引:0
作者
Debora Impera
Michele Rimoldi
机构
[1] Università degli Studi di Milano Bicocca,Dipartimento di Matematica e Applicazioni
关键词
-minimal hypersurfaces; Weighted manifolds; Stability; Finite index; Topology at infinity; 53C42; 53C21;
D O I
10.1007/s10711-014-9999-6
中图分类号
学科分类号
摘要
We study stability properties of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-minimal hypersurfaces isometrically immersed in weighted manifolds with non-negative Bakry–Émery Ricci curvature under volume growth conditions. Moreover, exploiting a weighted version of a finiteness result and the adaptation to this setting of Li–Tam theory, we investigate the topology at infinity of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-minimal hypersurfaces. On the way, we prove a new comparison result in weighted geometry and we provide a general weighted L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-Sobolev inequality for hypersurfaces in Cartan–Hadamard weighted manifolds, satisfying suitable restrictions on the weight function.
引用
收藏
页码:21 / 47
页数:26
相关论文
共 63 条
[1]  
Bianchini B(2009)Spectral radius, index estimates for Schrödinger operators and geometric applications J. Funct. Anal. 256 1769-1820
[2]  
Mari L(1981)A relation between growth and the spectrum of the Laplacian Math. Z. 178 501-508
[3]  
Rigoli M(2006)Ends of metric measure spaces and Sobolev inequalities Math. Z. 252 275-285
[4]  
Brooks R(1999)-cohomologie et inégalités de Sobolev Math. Ann. 314 613-639
[5]  
Buckley SM(2013)Volume estimates about shrinkers Proc. Am. Math. Soc. 141 687-696
[6]  
Koskela P(2012)Generic mean curvature flow I; generic singularities Ann. Math. 2 755-833
[7]  
Carron G(2012)On the finiteness of the Morse index for Schrödinger operators Manuscr. Math. 139 249-271
[8]  
Cheng X(2008)Topology of three-manifolds with positive Proc. Am. Math. Soc. 136 3255-3261
[9]  
Zhou D(1980)-scalar curvature Commun. Pure Appl. Math. 33 199-211
[10]  
Colding TH(1999)The structure of complete stable minimal surfaces in Bull. Am. Math. Soc. (N.S.) 36 135-249