共 58 条
- [1] Gillies R.J., Kinahan P.E., Hricak H., Radiomics: images are more than pictures, they are data, Radiology, 278, pp. 563-577, (2016)
- [2] Lambin P., Leijenaar R.T.H., Deist T., Et al., Radiomics: the bridge between medical imaging and personalized medicine, Nat Rev Clin Oncol, 14, pp. 749-762, (2017)
- [3] Rizzo S., Petrella F., Buscarino V., Et al., CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer, Eur Radiol, 26, pp. 32-42, (2016)
- [4] Larue R.T.H.M., van Timmeren J.E., de Jong E.E.C., Feliciani G., Leijenaar R.T.H., Schreurs W.M.J., Sosef M.N., Raat F.H.P.J., van der Zande F.H.R., Das M., van Elmpt W., Lambin P., Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study, Acta Oncologica, 56, 11, pp. 1544-1553, (2017)
- [5] Ergen B., Baykara M., Texture based feature extraction methods for content based medical image retrieval systems, Biomed Mater Eng, 24, pp. 3055-3062, (2014)
- [6] Haralick R.M., Shanmugam K., Dinstein I.H., Textural features for image classification, IEEE Trans Syst Man Cybern, 3, pp. 610-621, (1973)
- [7] Balagurunathan Y., Kumar V., Gu Y., Et al., Test-retest reproducibility analysis of lung CT image features, J Digit Imaging, 27, pp. 805-823, (2014)
- [8] Galloway M.M., Texture analysis using gray level run lengths, Comput Graph Image Process, 4, pp. 172-179, (1975)
- [9] Ollers M., Bosmans G., van Baardwijk A., Et al., The integration of PET–CT scans from different hospitals into radiotherapy treatment planning, Radiother Oncol, 87, pp. 142-146, (2008)
- [10] Suzuki K., Overview of deep learning in medical imaging, Radiol Phys Technol, 10, pp. 257-273, (2017)