Von neumann quantization of aharonov-bohm operator with δ interaction: Scattering theory, spectral and resonance properties

被引:0
作者
Honnouvo G. [1 ,2 ]
Hounkonnou M.N. [1 ,2 ]
Avossevou G.Y.H. [1 ,2 ]
机构
[1] International Chair in Mathematical Physics and Applications (ICMPA), Cotonou
[2] Unité de Recherche en Physique Théorique (URPT), Institut de Mathématiques et de Sciences Physiques (IMSP), Porto-Novo
关键词
D O I
10.2991/jnmp.2004.11.s1.8
中图分类号
学科分类号
摘要
Using the theory of self-adjoint extensions, we study the interaction model formally given by the Hamiltonian Hα + V (r), where Hα is the Aharonov-Bohm Hamiltonian and V (r) is the δ-type interaction potential on the cylinder of radius R. We give the mathematical definition of the model, the self-adjointness of the Hamiltonian and provide relevant spectral properties, results for resonance effects and stationary scattering characteristics. © 2004 Taylor & Francis Group, LLC.
引用
收藏
页码:66 / 71
页数:5
相关论文
共 9 条
  • [1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, (1972)
  • [2] Aharonov Y., Bohm D., Significance of Electromagnetic Potentials in the Quantum Theory, Phys. Rev., 115, pp. 485-491, (1959)
  • [3] Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H., Solvable Models in Quantum Mechanics, Texts and Monographs in Physics, (1988)
  • [4] Akhiezer N.I., Glazman I.M., Theory of Linear Operators in Hilbert Space, 2, (1981)
  • [5] Ballentine L.E., Quantum Mechanics, (1995)
  • [6] Dabrowski L., Stovicek P., Aharonov-Bohm Effect with δ-Type Interaction, J. Math. Phys., 39, pp. 47-62, (1998)
  • [7] Hounkonnou M.N., Hounkpe M., Shabani J., Scattering Theory for Finitely Many Sphere Interactions Supported by Concentric Spheres, J. Math. Phys., 38, pp. 2832-2850, (1997)
  • [8] Honnouvo G., Hounkonnou M.N., Avossevou G.H.Y.
  • [9] Reed M., Simon B., Methods of Modern Mathematical Physics, 4, (1978)