On Transformations and Determinants of Wishart Variables on Symmetric Cones

被引:0
作者
Hélène Massam
Erhard Neher
机构
来源
Journal of Theoretical Probability | 1997年 / 10卷
关键词
Determinants; Wishart distributions; symmetric cones;
D O I
暂无
中图分类号
学科分类号
摘要
Let x and y be independent Wishart random variables on a simple Jordan algebra V. If c is a given idempotent of V, write \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x = x_1 + x_{12} + x_0 $$ \end{document} for the decomposition of x in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$V(c,1) \oplus V(c,1/2) \oplus V(c,0)$$ \end{document} where V(c,λ) equals the set of v such that cv=λv. In this paper we compute E(det(ax+by)) and some generalizations of it (Theorems 5 and 6). We give the joint distribution of (x1, x12, y0) where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$y_0 = x_0 - P(x_{12} )x_1^{ - 1} $$ \end{document} and P is the quadratic representation in V. In statistics, if x is a real positive definite matrix divided into the blocks x11, x12, x21, x22, then y0 is equal to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x_{22.1} = x_{22} - x_{21} x_{11}^{ - 1} x_{12} $$ \end{document}. We also compute the joint distribution of the eigenvalues of x (Theorem 9). These results have been known only when V is the algebra of Hermitian matrices with entries in the real or the complex field. To obtain our results, we need to prove several new results on determinants in Jordan algebras. They include in particular extensions of some classical parts of linear algebra like Leibnitz's determinant formula (Proposition 2) or Schur's complement (Eqs. (3.3) and (3.6)).
引用
收藏
页码:867 / 902
页数:35
相关论文
共 13 条
[1]  
Andersson S. A.(1995)Unbiasedness of the likelihood ratio test for lattice conditional independence models J. Mult. Anal. 53 1-17
[2]  
Perlman M. D.(1994)Characterization of the Jorgensen set in generalized linear models Test 3 145-162
[3]  
Casalis M.(1994)Invariant Generalized Functions in Homogeneous Domains J. Funct. Anal. Appl. 9 50-52
[4]  
Letac G.(1988)Covariance hypotheses which are linear in both the covariance and the inverse covariance Ann. of Statist. 16 302-322
[5]  
Gindikin S. G.(1976)Some recent developments on complex multivariate distributions J. Mult. Anal. 6 1-30
[6]  
Jensen S. T.(1995)Craig's Theorem for the Wishart Distribution on Symmetric Cones Ann. Inst. Stat. Math. 47 785-799
[7]  
Krishnaiah P. R.(1989)On the Socle of a Jordan Pair Collect. Math. 40 109-125
[8]  
Letac G.(1991)Finiteness Conditions in Jordan Pairs Math. Z. 206 577-587
[9]  
Massam H.(1994)An Exact Decomposition Theorem and a Unified View of Some Related Distributions for a Class of Exponential Transformation Models on Symmetric Cones Ann. of Statist. 22 369-393
[10]  
Loos O.(1994)Local Maxima and the Expected Euler Characteristic of Excursion Sets of Adv. Appl. Prob. 26 13-42