“Pull and push back” concepts of longevity and life span extension

被引:0
|
作者
Khachik Muradian
机构
[1] State Institute of Gerontology of National Academy of Medical Sciences of Ukraine,
来源
Biogerontology | 2013年 / 14卷
关键词
Aging; Metabolism; Artificial atmosphere; Life span extension; Extreme longevity;
D O I
暂无
中图分类号
学科分类号
摘要
The negative relation between metabolism and life span is a fundamental gerontological discovery well documented in a variety of ontogenetic and phylogenetic models. But how the long-lived species and populations sustain lower metabolic rate and, in more general terms, what is the efficient way to decline the metabolism? The suggested ‘pull and push back’ hypothesis assumes that decreased Po2 (hypoxia) and/or increased PCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{{\text{CO}}_{ 2} }}$$\end{document} (hypercapnia) may create preconditions for the declined metabolic and aging rates. However, wider implementation of such ideas is compromised because of little advances in modification of the metabolic rate. Artificial atmosphere with controlled PO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{\text{O}}_{2}}$$\end{document} and PCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document} could be a promising approach because of the minimal external invasions and involvement of the backward and forward loops ensuring physiological self-regulation of the metabolic perturbations. General considerations and existing data indicate that manipulations of PCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document} may be more efficient in life span extension than PO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{\text{O}}_{2}}$$\end{document}. Thus, maximum life span of mammals positively correlates with the blood PCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document} and HCO3− but not with PO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{\text{O}}_{2}}$$\end{document}. Yet, proportional decease of the body PO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{\text{O}}_{2}}$$\end{document} and increase of PCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{P}}_{{{\text{CO}}_{2} }}$$\end{document} seems the most optimal regime ensuring lower losses of the energy equivalents. Furthermore, especially rewarding results could be expected when such changes are modeled without major external invasions using the animals’ inner capacity to consume O2 and generate CO2, as it is typical for the extreme longevity.
引用
收藏
页码:687 / 691
页数:4
相关论文
共 50 条
  • [1] "Pull and push back" concepts of longevity and life span extension
    Muradian, Khachik
    BIOGERONTOLOGY, 2013, 14 (06) : 687 - 691
  • [2] Prospects for Life Span Extension
    Sierra, Felipe
    Hadley, Evan
    Suzman, Richard
    Hodes, Richard
    ANNUAL REVIEW OF MEDICINE, 2009, 60 : 457 - 469
  • [3] The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast
    Easlon, Erin
    Tsang, Felicia
    Skinner, Craig
    Wang, Chen
    Lin, Su-Ju
    GENES & DEVELOPMENT, 2008, 22 (07) : 931 - 944
  • [4] Methionine restriction beyond life-span extension
    Ables, Gene P.
    Hens, Julie R.
    Nichenametla, Sailendra N.
    DIET, SULFUR AMINO ACIDS, AND HEALTH SPAN, 2016, 1363 : 68 - 79
  • [5] Life span extension and cancer risk: myths and reality
    Anisimov, VN
    EXPERIMENTAL GERONTOLOGY, 2001, 36 (07) : 1101 - 1136
  • [6] Cocoa confers life span extension in Drosophila melanogaster
    Bahadorani, Sepehr
    Hilliker, Arthur J.
    NUTRITION RESEARCH, 2008, 28 (06) : 377 - 382
  • [7] Caloric restriction: life span extension and retardation of brain aging
    Weindruch, R
    CLINICAL NEUROSCIENCE RESEARCH, 2003, 2 (5-6) : 279 - 284
  • [8] Autophagy is required for extension of yeast chronological life span by rapamycin
    Alvers, Ashley L.
    Wood, Michael S.
    Hu, Doreen
    Kaywell, Amelia C.
    Dunn, William A., Jr.
    Aris, John P.
    AUTOPHAGY, 2009, 5 (06) : 847 - 849
  • [9] Reductive stress on life span extension in C. elegans
    Ralser M.
    Benjamin I.J.
    BMC Research Notes, 1 (1)
  • [10] Disentangling rectangularization and life span extension with the moving rectangle method
    Schalkwijk, Frank H.
    Koopman, Jacob J. E.
    Ghariq, Eidrees
    de Beer, Joop A. A.
    van Bodegom, David
    Westendorp, Rudi G. J.
    ANNALS OF EPIDEMIOLOGY, 2016, 26 (03) : 218 - 221