Dimensions of Solution Spaces of the Schrodinger Equation with Finite Dirichlet Integral on Non-compact Riemannian Manifolds

被引:0
作者
A. G. Losev
V. V. Filatov
机构
[1] Volgograd State University,
来源
Lobachevskii Journal of Mathematics | 2019年 / 40卷
关键词
Riemannian manifolds; Dirichlet integral; elliptic equations; stationary Schrodinger equation; massive sets;
D O I
暂无
中图分类号
学科分类号
摘要
Exact estimations of dimensions of spaces of bounded solutions of stationary Schrodinger equation with finite Dirichlet integral in terms of massive sets are obtained. It is proved that dimension of spaces of bounded solutions of this equation is not less than number of disjoint qD-massive subsets of manifold. This paper partly extends, the results of A.A. Grigor’yan, A.G. Losev (2017).
引用
收藏
页码:1363 / 1370
页数:7
相关论文
共 7 条
  • [1] Dimensions of Solution Spaces of the Schrodinger Equation with Finite Dirichlet Integral on Non-compact Riemannian Manifolds
    Losev, A. G.
    Filatov, V. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (09) : 1363 - 1370
  • [2] Elliptic differential inclusions on non-compact Riemannian manifolds
    Kristaly, Alexandru
    Mezei, Ildiko I.
    Szilak, Karoly
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69
  • [3] LIOUVILLE TYPE THEOREMS FOR SOLUTIONS OF SEMILINEAR EQUATIONS ON NON-COMPACT RIEMANNIAN MANIFOLDS
    Losev, A. G.
    Filatov, V. V.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (04): : 629 - 639
  • [4] Magnetic Schrodinger operators with discrete spectra on non-compact Kahler manifolds
    Anghel, Nicolae
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (02): : 11 - 20
  • [5] Yamabe type equations with sign-changing nonlinearities on non-compact Riemannian manifolds
    Bianchini, Bruno
    Mari, Luciano
    Rigoli, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (01) : 1 - 72
  • [6] Sharp Hardy-type inequalities for non-compact harmonic manifolds and Damek-Ricci spaces
    Fischer, Florian
    Peyerimhoff, Norbert
    ISRAEL JOURNAL OF MATHEMATICS, 2025,
  • [7] A C0-estimate for the parabolic Monge-Ampere equation on complete non-compact Kahler manifolds
    Chau, Albert
    Tam, Luen-Fai
    COMPOSITIO MATHEMATICA, 2010, 146 (01) : 259 - 270