New Sum-Product Estimates for Real and Complex Numbers

被引:0
|
作者
Antal Balog
Oliver Roche-Newton
机构
[1] Hungarian Academy of Sciences,Alfréd Rényi Institute of Mathematics
[2] Austrian Academy of Sciences,Johann Radon Institute of Computational and Applied Mathematics (RICAM)
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Sum-product estimates; Complex numbers; Elementary geometry;
D O I
暂无
中图分类号
学科分类号
摘要
A variation on the sum-product problem seeks to show that a set which is defined by additive and multiplicative operations will always be large. In this paper, we prove new results of this type. In particular, we show that for any finite set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} of positive real numbers, it is true that |{a+bc+d:a,b,c,d∈A}|≥2|A|2-1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Big |\Big \{\frac{a+b}{c+d}:a,b,c,d\in {A}\Big \}\Big |\ge {2|A|^2-1}. \end{aligned}$$\end{document}As a consequence of this result, it is also established that |4k-1A(k)|:=|A…A⏟ktimes+⋯+A…A⏟4k-1times|≥|A|k.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |4^{k-1}A^{(k)}|:=|\underbrace{\underbrace{A\ldots {A}}_{k\,\,\text {times}}+\cdots {+A\ldots {A}}}_{4^{k-1} \mathrm{times}}|\ge {|A|^k}. \end{aligned}$$\end{document}Later on, it is shown that both of these bounds hold in the case when A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is a finite set of complex numbers, although with smaller multiplicative constants.
引用
收藏
页码:825 / 846
页数:21
相关论文
共 17 条