Schwarz Lemma for Harmonic Mappings in the Unit Ball

被引:0
作者
David Kalaj
机构
[1] University of Montenegro,Faculty of Natural Sciences and Mathematics
来源
Complex Analysis and Operator Theory | 2018年 / 12卷
关键词
Harmonic mappings; Schwarz inequality; Hardy space; Primary 31A05; Secondary 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
If 1⩽p⩽∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\leqslant p\leqslant \infty $$\end{document} and u is a harmonic mapping of the unit ball Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^n$$\end{document} into itself such that u(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(0) = 0$$\end{document}, then we obtain the sharp inequality |u(x)|⩽gp(|x|)‖u‖p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u(x)|\leqslant g_p(|x|)\Vert u\Vert _p$$\end{document} for some smooth function gp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_p$$\end{document} vanishing in 0, where ‖u‖∞:=supx∈Bn|u(x)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert u\Vert _\infty := \sup _{x\in B^n}|u(x)|$$\end{document} for p=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = +\infty $$\end{document}, and otherwise ‖u‖p:=supr∫S|u(rη)|pdσ(η)1/p.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert u\Vert _p:=\sup _r\left( \int _S|u(r\eta )|^pd\sigma (\eta )\right) ^{1/p}. \end{aligned}$$\end{document}Here σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the normalized rotationally invariant Borel measure on the unit sphere S:=∂Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S := \partial B^n$$\end{document}. Moreover, we obtain an explicit form of the sharp constant Cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p$$\end{document} in the inequality ‖Du(0)‖⩽Cp‖u‖p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert Du(0)\Vert \leqslant C_p\Vert u\Vert _p$$\end{document}. Those two results extend some known result from harmonic mapping theory (Axler et al. in Harmonic function theory, Springer, New York, 1992, Chapter VI).
引用
收藏
页码:545 / 554
页数:9
相关论文
共 11 条
[1]  
Khavinson D(1992)An extremal problem for harmonic functions in the ball Can. Math. Bull. 35 218-220
[2]  
Kalaj D(2013)Optimal estimates for the gradient of harmonic functions in the unit disk Complex Anal. Oper. Theory 7 1167-1183
[3]  
Markovic M(2012)Optimal estimates for harmonic functions in the unit ball Positivity 16 771-782
[4]  
Kalaj D(2012)On harmonic functions and the Schwarz lemma Proc. AMS 140 161-165
[5]  
Markovic M(2010)Sharp pointwise estimates for directional derivatives of harmonic functions in a multidimensional ball J. Math. Sci. 169 167-187
[6]  
Kalaj D(1950)Extremum problems in the theory of analytic functions Acta Math. 82 275-325
[7]  
Vuorinen M(undefined)undefined undefined undefined undefined-undefined
[8]  
Kresin G(undefined)undefined undefined undefined undefined-undefined
[9]  
Maz’ya V(undefined)undefined undefined undefined undefined-undefined
[10]  
Macintyre AJ(undefined)undefined undefined undefined undefined-undefined