Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises
被引:0
|
作者:
Julien Fageot
论文数: 0引用数: 0
h-index: 0
机构:Biomedical Imaging Group,École polytechnique fédérale de Lausanne
Julien Fageot
Michael Unser
论文数: 0引用数: 0
h-index: 0
机构:Biomedical Imaging Group,École polytechnique fédérale de Lausanne
Michael Unser
机构:
[1] Biomedical Imaging Group,École polytechnique fédérale de Lausanne
来源:
Journal of Theoretical Probability
|
2019年
/
32卷
关键词:
Lévy white noises;
Linear SDE;
Scaling limit;
Self-similar processes;
60G18;
60G20;
60G51;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Consider a random process s that is a solution of the stochastic differential equation Ls=w\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {L}s = w$$\end{document} with L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {L}$$\end{document} a homogeneous operator and w a multidimensional Lévy white noise. In this paper, we study the asymptotic effect of zooming in or zooming out of the process s. More precisely, we give sufficient conditions on L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {L}$$\end{document} and w such that aHs(·/a)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a^H s(\cdot / a)$$\end{document} converges in law to a non-trivial self-similar process for some H, when a→0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a \rightarrow 0$$\end{document} (coarse-scale behavior) or a→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a \rightarrow \infty $$\end{document} (fine-scale behavior). The parameter H depends on the homogeneity order of the operator L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {L}$$\end{document} and the Blumenthal–Getoor and Pruitt indices associated with the Lévy white noise w. Finally, we apply our general results to several famous classes of random processes and random fields and illustrate our results on simulations of Lévy processes.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing 100190, Peoples R China
Luo, Dejun
Zhu, Rongchan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
Univ Bielefeld, Dept Math, D-33615 Bielefeld, GermanyChinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing 100190, Peoples R China
Luo, Dejun
Saal, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Darmstadt, Dept Math, Schlossgartenstr 7, D-64289 Darmstadt, GermanyChinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Key Lab RCSDS, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaScuola Normale Super Pisa, Piazza Cavalieri 7, I-56124 Pisa, Italy