Analytic continuation and perturbative expansions in QCD

被引:0
|
作者
I. Caprini
J. Fischer
机构
[1] National Institute of Physics and Nuclear Engineering,
[2] POB MG 6,undefined
[3] 76900 Bucharest,undefined
[4] Romania ,undefined
[5] The Abdus Salam International Centre for Theoretical Physics,undefined
[6] 34014 Trieste,undefined
[7] Italy ,undefined
[8] Institute of Physics,undefined
[9] Academy of Sciences of the Czech Republic,undefined
[10] 18221 Prague 8,undefined
[11] Czech Republic ,undefined
关键词
Perturbation Theory; Complex Plane; Branch Point; Analytic Continuation; Divergence Pattern;
D O I
暂无
中图分类号
学科分类号
摘要
Starting from the divergence pattern of perturbative quantum chromodynamics, we propose a novel, non-power series replacing the standard expansion in powers of the renormalized coupling constant a. The coefficients of the new expansion are calculable at each finite order from the Feynman diagrams, while the expansion functions, denoted as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_n(a)$\end{document}, are defined by analytic continuation in the Borel complex plane. The infrared ambiguity of perturbation theory is manifest in the prescription dependence of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_n(a)$\end{document}. We prove that the functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_n(a)$\end{document} have branch points and essential singularities at the origin a=0 of the complex a plane and that their perturbative expansions in powers of a are divergent, while the expansion of the correlators in terms of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W_n(a)$\end{document} set is convergent under quite loose conditions.
引用
收藏
页码:127 / 135
页数:8
相关论文
共 50 条
  • [41] Analytic continuation in two-color QCD: new results on the critical line
    Cea, P.
    Cosmai, L.
    D'Elia, M.
    Papa, A.
    NUCLEAR PHYSICS A, 2009, 820 : 239C - 242C
  • [42] Progress in perturbative QCD
    Vermaseren, JAM
    LOW X PHYSICS, 1998, : 83 - 91
  • [43] Developments in perturbative QCD
    Salam, Gavin P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (8-9): : 1778 - 1790
  • [44] Perturbative QCD factorization of ργ☆ → ρ
    Zhang, Ya-lan
    Cheng, Shan
    Hua, Jun
    Xiao, Zhen-Jun
    PHYSICAL REVIEW D, 2016, 93 (03)
  • [45] Perturbative QCD for the LHC
    Salam, Gavin P.
    35TH INTERNATIONAL CONFERENCE OF HIGH ENERGY PHYSICS (ICHEP 2010), 2010,
  • [46] On the diffraction in the perturbative QCD
    Braun, M
    PHYSICS LETTERS B, 1998, 425 (3-4) : 354 - 358
  • [47] Perturbative QCD at the LHC
    Ferrera, G.
    Trentadue, L.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2014, 37 (01): : 83 - 91
  • [48] HANDBOOK OF PERTURBATIVE QCD
    STERMAN, G
    SMITH, J
    COLLINS, JC
    WHITMORE, J
    BROCK, R
    HUSTON, J
    PUMPLIN, J
    TUNG, WK
    WEERTS, H
    YUAN, CP
    KUHLMANN, S
    MISHRA, S
    MORFIN, JG
    OLNESS, F
    OWENS, J
    QIU, JW
    SOPER, DE
    REVIEWS OF MODERN PHYSICS, 1995, 67 (01) : 157 - 248
  • [49] IS PERTURBATIVE QCD IN TROUBLE
    SAMUEL, MA
    SURGULADZE, L
    MODERN PHYSICS LETTERS A, 1992, 7 (09) : 781 - 783
  • [50] Basics of Perturbative QCD
    Qiu, Jian-Wei
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (187): : 1 - 16