On One Generalized Translation and the Corresponding Inequality of Different Metrics

被引:0
|
作者
V. V. Arestov
M. V. Deikalova
机构
[1] Ural Federal University,
[2] Krasovskii Institute of Mathematics and Mechanics,undefined
[3] Ural Branch of the Russian Academy of Sciences,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2022年 / 319卷
关键词
generalized translation operator; trigonometric polynomial; inequality of different metrics;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the properties of the generalized translation operator generated by the system of functions superscriptsubscript2𝑘1𝜋2𝑡𝑘1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\cos\left(\frac{(2k-1)\pi}{2}t\right)\right\}_{k=1}^{\infty}$$\end{document} in the spaces superscript𝐿𝑝01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(0,1)$$\end{document}, 𝑝1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geq 1$$\end{document}. The translation operator is applied to the study of the Nikol’skii inequality between the uniform norm and the superscript𝐿𝑝\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-norm of polynomials in this system.
引用
收藏
页码:S30 / S42
相关论文
共 28 条