共 23 条
Remarks on the Operator-Norm Convergence of the Trotter Product Formula
被引:0
|作者:
Hagen Neidhardt
Artur Stephan
Valentin A. Zagrebnov
机构:
[1] WIAS Berlin,Institut für Mathematik
[2] Humboldt Universität zu Berlin,Institut de Mathématiques de Marseille (I2M
[3] Université d’Aix-Marseille,UMR7373)
来源:
Integral Equations and Operator Theory
|
2018年
/
90卷
关键词:
Semigroups;
Bounded perturbations;
Trotter product formula;
Darboux–Riemann sums;
Operator-norm convergence;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We revise the operator-norm convergence of the Trotter product formula for a pair {A,B}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{A,B\}$$\end{document} of generators of semigroups on a Banach space. Operator-norm convergence holds true if the dominating operator A generates a holomorphic contraction semigroup and B is a A-infinitesimally small generator of a contraction semigroup, in particular, if B is a bounded operator. Inspired by studies of evolution semigroups it is shown in the present paper that the operator-norm convergence generally fails even for bounded operators B if A is not a holomorphic generator. Moreover, it is shown that operator norm convergence of the Trotter product formula can be arbitrary slow.
引用
收藏
相关论文