Remarks on the Operator-Norm Convergence of the Trotter Product Formula

被引:0
|
作者
Hagen Neidhardt
Artur Stephan
Valentin A. Zagrebnov
机构
[1] WIAS Berlin,Institut für Mathematik
[2] Humboldt Universität zu Berlin,Institut de Mathématiques de Marseille (I2M
[3] Université d’Aix-Marseille,UMR7373)
来源
Integral Equations and Operator Theory | 2018年 / 90卷
关键词
Semigroups; Bounded perturbations; Trotter product formula; Darboux–Riemann sums; Operator-norm convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We revise the operator-norm convergence of the Trotter product formula for a pair {A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{A,B\}$$\end{document} of generators of semigroups on a Banach space. Operator-norm convergence holds true if the dominating operator A generates a holomorphic contraction semigroup and B is a A-infinitesimally small generator of a contraction semigroup, in particular, if B is a bounded operator. Inspired by studies of evolution semigroups it is shown in the present paper that the operator-norm convergence generally fails even for bounded operators B if A is not a holomorphic generator. Moreover, it is shown that operator norm convergence of the Trotter product formula can be arbitrary slow.
引用
收藏
相关论文
共 23 条
  • [21] Stability and Convergence of Product Formulas for Operator Matrices
    Batkai, Andras
    Csomos, Petra
    Engel, Klaus-Jochen
    Farkas, Balint
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (02) : 281 - 299
  • [22] Trotter-Kato product formula and fractional powers of self-adjoint generators
    Ichinose, T
    Neidhardt, H
    Zagrebnov, VA
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (01) : 33 - 57
  • [23] Convergence Rate Estimates for Trotter Product Approximations of Solution Operators for Non-autonomous Cauchy Problems
    Neidhardt, Hagen
    Stephan, Artur
    Zagrebnov, Valentin A.
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2020, 56 (01) : 83 - 135