Some differential identities on prime and semiprime rings and Banach algebras

被引:0
|
作者
Mohd Arif Raza
Mohammad Shadab Khan
Nadeem ur Rehman
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science & Arts
[2] Aligarh Muslim University,Rabigh
[3] Aligarh Muslim University,Department of Commerce
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2019年 / 68卷
关键词
Generalized derivation; Martindale ring of quotients; Prime and semiprime ring; Banach algebra; 46J10; 16N20; 16N60; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript, we discuss the behaviour and nature of generalized derivation G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} on a (semi-) prime ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}$$\end{document} satisfying certain differential identities over I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {I}}$$\end{document}, a nonzero ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}$$\end{document}. Moreover, we extend our purely ring theoretic result to a non-commutative Banach algebras and obtained some range inclusion results of continuous generalized derivations.
引用
收藏
页码:305 / 313
页数:8
相关论文
共 50 条
  • [41] Derivations of rings and Banach algebras
    Raza, Mohd Arif
    Khan, Mohammad Shadab
    Rehman, Nadeem Ur
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 141 - 153
  • [42] On commutativity of rings and Banach algebras with generalized derivations
    Ashraf, Mohammad
    Wani, Bilal Ahmad
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 155 - 163
  • [43] Co-commutators with generalized derivations in prime and semiprime rings
    Dhara, Basudeb
    De Filippis, Vincenzo
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (3-4): : 339 - 360
  • [44] Generalized derivations preserving Engel condition in prime and semiprime rings
    Prestigiacomo, Rita
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (03)
  • [45] Identities with generalized derivations in prime rings
    S. K. Tiwari
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 207 - 223
  • [46] RESULTS CONCERNING SYMMETRIC GENERALIZED BIDERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Ali, Asma
    De Filippis, V
    Shujat, Faiza
    MATEMATICKI VESNIK, 2014, 66 (04): : 410 - 417
  • [47] Identities with Generalized Derivations in Prime Rings
    Fosner, Maja
    Vukman, Joso
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) : 847 - 863
  • [48] Identities with Generalized Derivations in Prime Rings
    Maja Fošner
    Joso Vukman
    Mediterranean Journal of Mathematics, 2012, 9 : 847 - 863
  • [49] Identities with generalized derivations in prime rings
    Tiwari, S. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 207 - 223
  • [50] PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS
    Wei, Feng
    Xiao, Zhankui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 857 - 866