Some differential identities on prime and semiprime rings and Banach algebras

被引:0
|
作者
Mohd Arif Raza
Mohammad Shadab Khan
Nadeem ur Rehman
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science & Arts
[2] Aligarh Muslim University,Rabigh
[3] Aligarh Muslim University,Department of Commerce
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2019年 / 68卷
关键词
Generalized derivation; Martindale ring of quotients; Prime and semiprime ring; Banach algebra; 46J10; 16N20; 16N60; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript, we discuss the behaviour and nature of generalized derivation G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} on a (semi-) prime ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}$$\end{document} satisfying certain differential identities over I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {I}}$$\end{document}, a nonzero ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}$$\end{document}. Moreover, we extend our purely ring theoretic result to a non-commutative Banach algebras and obtained some range inclusion results of continuous generalized derivations.
引用
收藏
页码:305 / 313
页数:8
相关论文
共 50 条
  • [22] Generalized Derivations Acting on Multilinear Polynomials in Prime Rings and Banach Algebras
    Dhara B.
    Argaç N.
    Communications in Mathematics and Statistics, 2016, 4 (1) : 39 - 54
  • [23] Generalized Differential Identities of (Semi–)Prime Rings
    Feng Wei
    Acta Mathematica Sinica, 2005, 21 : 823 - 832
  • [24] JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, I
    Kim, Byung-Do
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 535 - 558
  • [25] IDENTITIES WITH GENERALIZED DERIVATIONS IN SEMIPRIME RINGS
    Dhara, Basudeb
    Ali, Shakir
    Pattanayak, Atanu
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 453 - 460
  • [26] Some Identities Related to Semiprime Ideal of Rings with Multiplicative Generalized Derivations
    Hummdi, Ali Yahya
    Sogutcu, Emine Koc
    Golbasi, Oznur
    Rehman, Nadeem ur
    AXIOMS, 2024, 13 (10)
  • [27] Differential identities involving Engel conditions in prime rings
    Pary, Sajad Ahmad
    Shah, Firdous A.
    FILOMAT, 2024, 38 (21) : 7435 - 7440
  • [28] Generalized differential identities of (semi-)prime rings
    Wei, F
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) : 823 - 832
  • [29] Generalized Differential Identities of (Semi-)Prime Rings
    Feng WEI Department of Applied Mathematics
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (04) : 823 - 832
  • [30] Additive maps on prime and semiprime rings with involution
    Alahmadi, A.
    Alhazmi, H.
    Ali, S.
    Dar, N. A.
    Khan, A. N.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03): : 1126 - 1133