Some differential identities on prime and semiprime rings and Banach algebras

被引:0
|
作者
Mohd Arif Raza
Mohammad Shadab Khan
Nadeem ur Rehman
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science & Arts
[2] Aligarh Muslim University,Rabigh
[3] Aligarh Muslim University,Department of Commerce
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2019年 / 68卷
关键词
Generalized derivation; Martindale ring of quotients; Prime and semiprime ring; Banach algebra; 46J10; 16N20; 16N60; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript, we discuss the behaviour and nature of generalized derivation G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}$$\end{document} on a (semi-) prime ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}$$\end{document} satisfying certain differential identities over I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {I}}$$\end{document}, a nonzero ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}$$\end{document}. Moreover, we extend our purely ring theoretic result to a non-commutative Banach algebras and obtained some range inclusion results of continuous generalized derivations.
引用
收藏
页码:305 / 313
页数:8
相关论文
共 50 条
  • [1] Some differential identities on prime and semiprime rings and Banach algebras
    Raza, Mohd Arif
    Khan, Mohammad Shadab
    Ur Rehman, Nadeem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (02) : 305 - 313
  • [2] A Pair of Generalized Derivations in Prime, Semiprime Rings and in Banach Algebras
    Dhara, Basudeb
    Rahmani, Venus
    Sahebi, Shervin
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (04): : 131 - 141
  • [3] A Note on Differential Identities in Prime and Semiprime Rings
    Khan, Mohammad Shadab
    Raza, Mohd Arif
    Rehman, Nadeem Ur
    CONTEMPORARY MATHEMATICS, 2020, 1 (02): : 77 - 83
  • [4] Generalized differential identities on prime rings and algebras
    Ansari, Abu Zaid
    Shujat, Faiza
    Fallatah, Ahlam
    AIMS MATHEMATICS, 2023, 8 (10): : 22758 - 22765
  • [5] Identities with Generalized Derivations on Prime Rings and Banach Algebras
    Carini, Luisa
    De Filippis, Vincenzo
    ALGEBRA COLLOQUIUM, 2012, 19 : 971 - 986
  • [6] Some identities involving generalized (α, β)-derivations in prime and semiprime rings
    Bera, Manami
    Dhara, Basudeb
    Kar, Sukhendu
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [7] On prime and semiprime rings with generalized derivations and non-commutative Banach algebras
    Raza, Mohd Arif
    Rehman, Nadeem Ur
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (03): : 389 - 398
  • [8] On prime and semiprime rings with generalized derivations and non-commutative Banach algebras
    MOHD ARIF RAZA
    NADEEM UR REHMAN
    Proceedings - Mathematical Sciences, 2016, 126 : 389 - 398
  • [9] Some Identities Involving Multiplicative Generalized Derivations in Prime and Semiprime Rings
    Dhara, Basudeb
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01): : 25 - 36
  • [10] Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings
    Basudeb Dhara
    Sukhendu Kar
    Nripendu Bera
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1497 - 1516