Classical global solutions for a class of Hamilton-Jacobi equations

被引:0
作者
Cruz-Sampedro J. [1 ]
机构
[1] Departamento de Ciencias Básicas, UAM-A, Col Reynosa Tamaulipas, Mexico, D.F. 02200
关键词
Eikonal equation; Global solution; Hamilton-Jacobi equation;
D O I
10.1007/s12346-010-0017-6
中图分类号
学科分类号
摘要
Let V be a real-valued function of class C2 on ℝn, n ≥ 2, which vanishes if {pipe}x{pipe} ≤ R and, for some ∈ > 0, satisfies ∂αx V(x) = O({pipe}x{pipe}-∈-{pipe}α{pipe}), as {pipe}x{pipe} → ∞, for {pipe}α{pipe} ≤ 2. Using a global inverse function theorem of Hadamard, we showthat if R is sufficiently large, then the Hamilton-Jacobi equation of eikonal type {pipe}∇u{pipe}2+V(x) = k2, with k > 0, has a C1 solution on ℝn {0}. © Birkhäuser/Springer Basel AG 2010.
引用
收藏
页码:267 / 277
页数:10
相关论文
共 10 条
  • [1] Agmon S., On the Asymptotic Behavior of Solutions of Schrödinger type Equations in Unbounded Domains, (1988)
  • [2] Arnold V., Ordinary Differential Equations, (1985)
  • [3] Barles J., Eikonal equations associated with Schrödinger operators with nonspherical radiation conditions, Commun. PDE, 12, 3, pp. 263-283, (1987)
  • [4] Cruz J., Exact asymptotic behavior at infinity of solutions to abstract second-order differential inequalities in Hilbert spaces, Math. Z., 237, pp. 727-735, (2001)
  • [5] Deimling K., Nonlinear Functional Analysis, (1985)
  • [6] Derezinski J., Gerard C., Long-range scattering in the position representation, J. Math. Phys., 38, 8, pp. 3925-3942, (1997)
  • [7] Hormander L., The Analysis of Linear Partial Differential Operators, 4, (1985)
  • [8] Jager W., Das AsymptotischeVerhalten von Losungen eines Typs vonDifferential Gleichungen, Math. Z., 112, pp. 26-36, (1969)
  • [9] John F., Partial Differential Equations, (1982)
  • [10] Yafaev D., Wave operators for the Schrödinger equation, Theor. Math. Phys., 38, pp. 992-998, (1980)