Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers

被引:0
|
作者
Irvine J.T.S. [1 ]
Neagu D. [1 ]
Verbraeken M.C. [1 ]
Chatzichristodoulou C. [2 ]
Graves C. [2 ]
Mogensen M.B. [2 ]
机构
[1] School of Chemistry, University of St.Andrews, St.Andrews, Fife
[2] Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, Roskilde
基金
英国工程与自然科学研究理事会;
关键词
Critical region - Electrochemical interface - Electrochemical systems - Electrode/electrolyte interfaces - High temperature fuel cells - Interface structures - Intricate structures - Recent researches;
D O I
10.1038/nenergy.2015.14
中图分类号
学科分类号
摘要
The critical region determining the performance and lifetime of solid oxide electrochemical systems is normally at the electrode side of the electrode/electrolyte interface. Typically this electrochemically active region only extends a few micrometres and for best performance involves intricate structures and nanocomposites. Much of the most exciting recent research involves understanding processes occurring at this interface and in developing new means of controlling the structure at this interface on the nanoscale. Here we consider in detail the diverse range of materials architectures that may be involved, describe the evolution of these interface structures and finally explore the new chemistries that allow control and manipulation of these architectures to optimize both performance and durability. © 2016 Macmillan Publishers Limited. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [1] Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers
    Irvine, John T. S.
    Neagu, Dragos
    Verbraeken, Maarten C.
    Chatzichristodoulou, Christodoulos
    Graves, Christopher
    Mogensen, Mogens B.
    NATURE ENERGY, 2016, 1
  • [2] Electrochemical oxidation of ammonia in high-temperature fuel cells
    Gamanovich, NM
    Novikov, GI
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1997, 70 (07) : 1136 - 1137
  • [3] The electrochemical interface of the cathode in high temperature PEM fuel cells
    Zagoraiou, Eirini
    Paloukis, Fotios
    Neophytides, Stylianos G.
    Daletou, Maria K.
    ELECTROCHIMICA ACTA, 2020, 356
  • [4] HIGH-TEMPERATURE FUEL CELLS
    EDWARDS, DG
    FUEL, 1968, 47 (01) : 83 - +
  • [5] HIGH-TEMPERATURE FUEL CELLS
    KRONENBERG, ML
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1961, 108 (08) : C167 - C167
  • [6] HIGH-TEMPERATURE FUEL CELLS
    EULER, KJ
    CHEMIE INGENIEUR TECHNIK, 1971, 43 (09) : 593 - &
  • [7] Electrochemical Interface Optimization toward Low Oxygen Transport Resistance in High-Temperature Polymer Electrolyte Fuel Cells
    Xiao, Wei
    Xia, Zhangxun
    Li, Huanqiao
    Sun, Ruili
    Wang, Suli
    Sun, Gongquan
    ENERGY TECHNOLOGY, 2020, 8 (09)
  • [8] Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review
    Sun, Xinwei
    Simonsen, Stian Christopher
    Norby, Truls
    Chatzitakis, Athanasios
    MEMBRANES, 2019, 9 (07)
  • [9] Catalysis in high-temperature fuel cells
    Föger, K
    Ahmed, K
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (06): : 2149 - 2154
  • [10] Materials for high-temperature fuel cells
    Steele, BCH
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1712): : 1695 - 1710