Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids

被引:0
|
作者
Maciej T. Grzesiak
Franciszek Janowiak
Piotr Szczyrek
Katarzyna Kaczanowska
Agnieszka Ostrowska
Grzegorz Rut
Tomasz Hura
Andrzej Rzepka
Stanisław Grzesiak
机构
[1] Polish Academy of Sciences,The F. Górski Institute of Plant Physiology
[2] Pedagogical University,Department of Plant Physiology, Institute of Biology
来源
关键词
Abscisic acid (ABA); Drought; Soil compaction; Water relations; Waterlogging; Maize (; L.);
D O I
暂无
中图分类号
学科分类号
摘要
In field conditions plants undergo combinations of stresses like soil compaction combined with soil drought or flooding. In maize there exists an intraspecific variation in responses to environmental stresses, e.g. drought, flooding and soil compaction. In this study seedlings of two maize hybrids (sensitive and resistant to soil compaction) were grown under low, moderate and high soil compaction levels and drought or flooding. Water potential, electrolyte leakage, chlorophyll a content, gas exchange, ABA and antioxidant activity were measured. In seedlings exposed to different soil compaction levels differences between soil, leaf and root water potentials were observed at noon and later in the day. Significant differences between hybrids grown in low and severe soil compactions and exposed to drought or flooding were noticed in membrane injury, leaf water potential, chlorophyll a content and gas exchange parameters. Statistically significant differences between hybrids were observed in ABA content in the stem under severe and in the root under low soil compaction and exposed to drought and flooding, and in antioxidant activity in leaf under severe soil compaction and under low soil compaction with drought or flooding stresses. Further studies on physiological responses of genotypes contrasting in tolerance to different stresses would help us explore stress tolerance mechanisms.
引用
收藏
相关论文
共 50 条
  • [31] Selection approaches to the variation of responses to soil compaction stress among maize hybrids (Zea mays L.)
    Grzesiak, Maciej T.
    Maksymowicz, Anna
    Jurczyk, Barbara
    Hura, Tomasz
    Rut, Grzegorz
    Rzepka, Andrzej
    Grzesiak, Stanislaw
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2021, 207 (03) : 544 - 556
  • [32] Responses of a root system structure to soil compaction stress among maize (Zea mays L.) hybrids
    Rut, Grzegorz
    Grzesiak, Maciej T.
    Maksymowicz, Anna
    Jurczyk, Barbara
    Rzepka, Andrzej
    Hura, Katarzyna
    Grzesiak, Stanislaw
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2022, 208 (01) : 106 - 119
  • [33] Physiological and biochemical insights into the basal level of resistance of two maize hybrids in response to Fusarium verticillioides infection
    Cacique, Isaias S.
    Pinto, Luiz F. C. C.
    Aucique-Perez, Carlos E.
    Wordell Filho, Joao A.
    Rodrigues, Fabricio A.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 152 : 194 - 210
  • [34] Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes
    Izabela Marcińska
    Ilona Czyczyło-Mysza
    Edyta Skrzypek
    Maria Filek
    Stanisław Grzesiak
    Maciej T. Grzesiak
    Franciszek Janowiak
    Tomasz Hura
    Michał Dziurka
    Kinga Dziurka
    Agata Nowakowska
    Steve A. Quarrie
    Acta Physiologiae Plantarum, 2013, 35 : 451 - 461
  • [35] Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes
    Marcinska, Izabela
    Czyczylo-Mysza, Ilona
    Skrzypek, Edyta
    Filek, Maria
    Grzesiak, Stanislaw
    Grzesiak, Maciej T.
    Janowiak, Franciszek
    Hura, Tomasz
    Dziurka, Michal
    Dziurka, Kinga
    Nowakowska, Agata
    Quarrie, Steve A.
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (02) : 451 - 461
  • [36] Melatonin and KNO3 Application Improves Growth, Physiological and Biochemical Characteristics of Maize Seedlings under Waterlogging Stress Conditions
    Ahmad, Shakeel
    Wang, Guo-Yun
    Muhammad, Ihsan
    Zeeshan, Muhammad
    Zhou, Xun-Bo
    BIOLOGY-BASEL, 2022, 11 (01):
  • [37] Biochemical characterization of maize (Zea mays L.) hybrids under excessive soil moisture stress
    Sri Sai Subramanyam Dash
    Devraj Lenka
    Jyoti Prakash Sahoo
    Swapan Kumar Tripathy
    Kailash Chandra Samal
    Devidutta Lenka
    Rajendra Kumar Panda
    Cereal Research Communications, 2022, 50 : 875 - 884
  • [38] Biochemical characterization of maize (Zea mays L.) hybrids under excessive soil moisture stress
    Dash, Sri Sai Subramanyam
    Lenka, Devraj
    Sahoo, Jyoti Prakash
    Tripathy, Swapan Kumar
    Samal, Kailash Chandra
    Lenka, Devidutta
    Panda, Rajendra Kumar
    CEREAL RESEARCH COMMUNICATIONS, 2022, 50 (04) : 875 - 884
  • [39] Morpho-Physiological and Biochemical Responses of Maize Hybrids under Recurrent Water Stress at Early Vegetative Stage
    Kumdee, Orawan
    Molla, Md. Samim Hossain
    Kanavittaya, Kulwadee
    Romkaew, Jutamas
    Sarobol, Ed
    Nakasathien, Sutkhet
    AGRICULTURE-BASEL, 2023, 13 (09):
  • [40] Impact of Corn Cob-Derived Biochar in Altering Soil Quality, Biochemical Status and Improving Maize Growth under Drought Stress
    Ali, Liaqat
    Manzoor, Natasha
    Li, Xuqing
    Naveed, Muhammad
    Nadeem, Sajid Mahmood
    Waqas, Muhammad Rashid
    Khalid, Muhammad
    Abbas, Aown
    Ahmed, Temoor
    Li, Bin
    Yan, Jianli
    AGRONOMY-BASEL, 2021, 11 (11):