On wavelets Kantorovich (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Baskakov operators and approximation properties

被引:0
作者
Alexander E. Moreka
Santosh Kumar
M. Mursaleen
机构
[1] Ardhi University,Department of Computer Systems and Mathematics
[2] University of Dar es Salaam,Department of Mathematics, College of Natural and Applied Sciences
[3] North Eastern Hill University,Department of Mathematics
[4] Aligarh Muslim University,Department of Mathematics
[5] China Medical University Hospital,Department of Medical Research
[6] China Medical University (Taiwan),undefined
关键词
Kantorovich ; -Baskakov operators; Classical ; -Baskakov operators; Modified Kantorovich ; -Baskakov operators; -integer; -power basis; -derivative; Wavelets; Haar basis; 41A25; 41A36; 33C45;
D O I
10.1186/s13660-023-03045-6
中图分类号
学科分类号
摘要
In this paper, we generalize and extend the Baskakov-Kantorovich operators by constructing the (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p, q)$\end{document}-Baskakov Kantorovich operators (ϒn,b,p,qh)(x)=[n]p,q∑b=0∞qb−1υb,np,q(x)∫Rh(y)Ψ([n]p,qqb−1pn−1y−[b]p,q)dp,qy.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{aligned} (\Upsilon _{n,b,p,q} h) (x) = [ n ]_{p,q} \sum_{b=0}^{ \infty}q^{b-1} \upsilon _{b,n}^{p,q}(x) \int _{\mathbb{R}}h(y)\Psi \biggl( [ n ] _{p,q} \frac{q^{b-1}}{p^{n-1}}y - [ b ] _{p,q} \biggr) \,d_{p,q}y. \end{aligned} $$\end{document} The modified Kantorovich (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p, q)$\end{document}-Baskakov operators do not generalize the Kantorovich q-Baskakov operators. Thus, we introduce a new form of this operator. We also introduce the following useful conditions, that is, for any 0≤b≤ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 \leq b \leq \omega $\end{document}, such that ω∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega \in \mathbb{N}$\end{document}, Ψω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Psi _{\omega}$\end{document} is a continuous derivative function, and 0<q<p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< q< p \leq 1$\end{document}, we have ∫RxbΨω(x)dp,qx=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\mathbb{R}}x^{b}\Psi _{\omega}(x)\,d_{p,q}x = 0 $\end{document}. Also, for every Ψ∈L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Psi \in L_{\infty}$\end{document},there exists a finite constant γ such that γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma > 0$\end{document} with the property Ψ⊂[0,γ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Psi \subset [ 0, \gamma ] $\end{document},its first ω moment vanishes, that is, for 1≤b≤ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1 \leq b \leq \omega $\end{document}, we have that ∫RybΨ(y)dp,qy=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\mathbb{R}}y^{b}\Psi (y)\,d_{p,q}y = 0$\end{document},and ∫RΨ(y)dp,qy=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\mathbb{R}}\Psi (y)\,d_{p,q}y = 1$\end{document}. Furthermore, we estimate the moments and norm of the new operators. And finally, we give an upper bound for the operator’s norm.
引用
收藏
相关论文
共 42 条
[1]  
Acar T.(2016)On Kantorovich modification of J. Inequal. Appl. 2016 3-11
[2]  
Aral A.(1997)-Baskakov operators Rev. Anal. Numér. Théor. Approx. 26 109-122
[3]  
Mohiuddine A.(2009)Construction of Baskakov-type operators by wavelets Demonstr. Math. 42 134-146
[4]  
Agratini O.(2016)On Adv. Oper. Theory 1 249-251
[5]  
Aral A.(1957)-Baskakov type operators Dokl. Akad. Nauk SSSR 113 384-391
[6]  
Gupta V.(1995)-Type beta functions of second kind J. Nonlinear Math. Phys. 2 50-61
[7]  
Aral A.(1995)An example of sequence of linear positive operators in the space of continuous function IEEE Comput. Sci. Eng. 2 809-818
[8]  
Gupta V.(2009)Two-parameter deformation of the oscillator algebra and Open Math. 7 289-303
[9]  
Baskakov V.(1972) analog of two-dimensional conformal field theory Mat. Vesn. 9 889-902
[10]  
Burban I.(2018)An introduction to wavelets J. Inequal. Appl. 2018 1995-2013