Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

被引:0
作者
Michael I Love
Wolfgang Huber
Simon Anders
机构
[1] Harvard School of Public Health,Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Department of Biostatistics
[2] European Molecular Biology Laboratory,Genome Biology Unit
[3] Max Planck Institute for Molecular Genetics,Department of Computational Molecular Biology
来源
Genome Biology | / 15卷
关键词
Read Count; Differential Expression Analysis; DESeq2 Package; Observe Fisher Information; Negative Binomial Generalize Linear Model;
D O I
暂无
中图分类号
学科分类号
摘要
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.
引用
收藏
相关论文
共 50 条
[31]   Testing for association between RNA-Seq and high-dimensional data [J].
Rauschenberger, Armin ;
Jonker, Marianne A. ;
van de Wiel, Mark A. ;
Menezes, Renee X. .
BMC BIOINFORMATICS, 2016, 17
[32]   Comparative evaluation of gene set analysis approaches for RNA-Seq data [J].
Rahmatallah, Yasir ;
Emmert-Streib, Frank ;
Glazko, Galina .
BMC BIOINFORMATICS, 2014, 15
[33]   Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data [J].
Oh, Vera-Khlara S. ;
Li, Robert W. .
GENES, 2021, 12 (03) :1-23
[34]   OneStopRNAseq: A Web Application for Comprehensive and Efficient Analyses of RNA-Seq Data [J].
Li, Rui ;
Hu, Kai ;
Liu, Haibo ;
Green, Michael R. ;
Zhu, Lihua Julie .
GENES, 2020, 11 (10) :1-14
[35]   Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data [J].
Paulson, Joseph N. ;
Chen, Cho-Yi ;
Lopes-Ramos, Camila M. ;
Kuijjer, Marieke L. ;
Platig, John ;
Sonawane, Abhijeet R. ;
Fagny, Maud ;
Glass, Kimberly ;
Quackenbush, John .
BMC BIOINFORMATICS, 2017, 18
[36]   BEAVR: a browser-based tool for the exploration and visualization of RNA-seq data [J].
Perampalam, Pirunthan ;
Dick, Frederick A. .
BMC BIOINFORMATICS, 2020, 21 (01)
[37]   PDEGEM: Modeling non-uniform read distribution in RNA-Seq data [J].
Yuchao Xia ;
Fugui Wang ;
Minping Qian ;
Zhaohui Qin ;
Minghua Deng .
BMC Medical Genomics, 8
[38]   Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data [J].
Franck Rapaport ;
Raya Khanin ;
Yupu Liang ;
Mono Pirun ;
Azra Krek ;
Paul Zumbo ;
Christopher E Mason ;
Nicholas D Socci ;
Doron Betel .
Genome Biology, 14
[39]   Highly effective batch effect correction method for RNA-seq count data [J].
Zhang, Xiaoyu .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 :58-64
[40]   Phylogenomic Distance Method for Analyzing Transcriptome Evolution Based on RNA-seq Data [J].
Gu, Xun ;
Zou, Yangyun ;
Huang, Wei ;
Shen, Libing ;
Arendsee, Zebulun ;
Su, Zhixi .
GENOME BIOLOGY AND EVOLUTION, 2013, 5 (09) :1746-1753