Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

被引:0
作者
Michael I Love
Wolfgang Huber
Simon Anders
机构
[1] Harvard School of Public Health,Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Department of Biostatistics
[2] European Molecular Biology Laboratory,Genome Biology Unit
[3] Max Planck Institute for Molecular Genetics,Department of Computational Molecular Biology
来源
Genome Biology | / 15卷
关键词
Read Count; Differential Expression Analysis; DESeq2 Package; Observe Fisher Information; Negative Binomial Generalize Linear Model;
D O I
暂无
中图分类号
学科分类号
摘要
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.
引用
收藏
相关论文
共 50 条
  • [21] A Unified Model for Robust Differential Expression Analysis of RNA-Seq Data
    Liu, Kefei
    Shen, Li
    Jiang, Hui
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 437 - 442
  • [22] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [23] Data Driven Feature Selection for RNA-Seq Differential Expression Analysis
    Han, Henry
    PATTERN RECOGNITION IN BIOINFORMATICS, PRIB 2014, 2014, 8626 : 114 - 115
  • [24] Approaches for sRNA Analysis of Human RNA-Seq Data: Comparison, Benchmarking
    Bezuglov, Vitalik
    Stupnikov, Alexey
    Skakov, Ivan
    Shtratnikova, Victoria
    Pilsner, J. Richard
    Suvorov, Alexander
    Sergeyev, Oleg
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [25] Fully Bayesian analysis of allele-specific RNA-seq data
    Alvarez-Castro, Ignacio
    Niemi, Jarad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) : 7751 - 7770
  • [26] Flexible analysis of RNA-seq data using mixed effects models
    Turro, Ernest
    Astle, William J.
    Tavare, Simon
    BIOINFORMATICS, 2014, 30 (02) : 180 - 188
  • [27] A Two-Stage Poisson Model for Testing RNA-Seq Data
    Auer, Paul L.
    Doerge, Rebecca W.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [28] A SPARSE NEGATIVE BINOMIAL CLASSIFIER WITH COVARIATE ADJUSTMENT FOR RNA-SEQ DATA
    Rahman, Tanbin
    Huang, Hsin-En
    Li, Yujia
    Tai, An-Shun
    Hseih, Wen-Ping
    McClung, Colleen A.
    Tseng, George
    ANNALS OF APPLIED STATISTICS, 2022, 16 (02) : 1071 - 1089
  • [29] Transforming RNA-Seq Data to Improve the Performance of Prognostic Gene Signatures
    Zwiener, Isabella
    Frisch, Barbara
    Binder, Harald
    PLOS ONE, 2014, 9 (01):
  • [30] Inferring metabolic pathway activity levels from RNA-Seq data
    Yvette Temate-Tiagueu
    Sahar Al Seesi
    Meril Mathew
    Igor Mandric
    Alex Rodriguez
    Kayla Bean
    Qiong Cheng
    Olga Glebova
    Ion Măndoiu
    Nicole B. Lopanik
    Alexander Zelikovsky
    BMC Genomics, 17