Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

被引:0
|
作者
Michael I Love
Wolfgang Huber
Simon Anders
机构
[1] Harvard School of Public Health,Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Department of Biostatistics
[2] European Molecular Biology Laboratory,Genome Biology Unit
[3] Max Planck Institute for Molecular Genetics,Department of Computational Molecular Biology
来源
Genome Biology | / 15卷
关键词
Read Count; Differential Expression Analysis; DESeq2 Package; Observe Fisher Information; Negative Binomial Generalize Linear Model;
D O I
暂无
中图分类号
学科分类号
摘要
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.
引用
收藏
相关论文
共 50 条
  • [1] In Papyro Comparison of TMM (edgeR), RLE (DESeq2), and MRN Normalization Methods for a Simple Two-Conditions-Without-Replicates RNA-Seq Experimental Design
    Maza, Elie
    FRONTIERS IN GENETICS, 2016, 7
  • [2] Estimation of data-specific constitutive exons with RNA-Seq data
    Patrick, Ellis
    Buckley, Michael
    Yang, Yee Hwa
    BMC BIOINFORMATICS, 2013, 14
  • [3] Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size
    Yu, Danni
    Huber, Wolfgang
    Vitek, Olga
    BIOINFORMATICS, 2013, 29 (10) : 1275 - 1282
  • [4] RNASeqGUI: a GUI for analysing RNA-Seq data
    Russo, Francesco
    Angelini, Claudia
    BIOINFORMATICS, 2014, 30 (17) : 2514 - 2516
  • [5] A scaling normalization method for differential expression analysis of RNA-seq data
    Mark D Robinson
    Alicia Oshlack
    Genome Biology, 11
  • [6] Getting the most out of RNA-seq data analysis
    Khang, Tsung Fei
    Lau, Ching Yee
    PEERJ, 2015, 3
  • [7] Model-based clustering for RNA-seq data
    Si, Yaqing
    Liu, Peng
    Li, Pinghua
    Brutnell, Thomas P.
    BIOINFORMATICS, 2014, 30 (02) : 197 - 205
  • [8] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    GENOME BIOLOGY, 2016, 17
  • [9] The Impact of Normalization Methods on RNA-Seq Data Analysis
    Zyprych-Walczak, J.
    Szabelska, A.
    Handschuh, L.
    Gorczak, K.
    Klamecka, K.
    Figlerowicz, M.
    Siatkowski, I.
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [10] A survey of best practices for RNA-seq data analysis
    Ana Conesa
    Pedro Madrigal
    Sonia Tarazona
    David Gomez-Cabrero
    Alejandra Cervera
    Andrew McPherson
    Michał Wojciech Szcześniak
    Daniel J. Gaffney
    Laura L. Elo
    Xuegong Zhang
    Ali Mortazavi
    Genome Biology, 17