On the annihilators and attached primes of top local cohomology modules

被引:0
作者
Ali Atazadeh
Monireh Sedghi
Reza Naghipour
机构
[1] Azarbaijan Shahid Madani University,Department of Mathematics
[2] University of Tabriz,Department of Mathematics
[3] School of Mathematics,undefined
[4] Institute for Research in Fundamental Sciences (IPM),undefined
来源
Archiv der Mathematik | 2014年 / 102卷
关键词
13D45; 14B15; 13E05; Annihilator; Attached primes; Cohomological dimension; Local cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
Let a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{a}}$$\end{document} be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that AnnR(HadimM(M))=AnnR(M/TR(a,M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$$\end{document} , where TR(a,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_R(\mathfrak{a}, M)}$$\end{document} is the largest submodule of M such that cd(a,TR(a,M))<cd(a,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$$\end{document} . Several applications of this result are given. Among other things, it is shown that there exists an ideal b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{b}}$$\end{document} of R such that AnnR(HadimM(M))=AnnR(M/Hb0(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$$\end{document} . Using this, we show that if HadimR(R)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$$\end{document} , then AttRHadimR-1(R)={p∈SpecR|cd(a,R/p)=dimR-1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$$\end{document} These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).
引用
收藏
页码:225 / 236
页数:11
相关论文
共 20 条
[1]  
Bahmanpour K.(2012)On the annihilators of local cohomology modules J. Algebra 363 8-13
[2]  
A’zami J.(2005)Attached primes of the top local cohomology modules with respect to an ideal Arch. Math. 84 292-297
[3]  
Ghasemi G.(2009)Vanishing of the top local cohomology modules over Noetherian rings Proc. Indian Acad. Sci. (Math. Sci.) 119 23-35
[4]  
Dibaei M.T.(2002)Cohomological dimension of certain algebraic varieties Proc. Amer. Math. Soc. 130 3537-3544
[5]  
Yassemi S.(2007)Attached primes of Matlis duals of local cohomology modules Arch. Math. 89 202-210
[6]  
Divaani-Aazar K.(2008)Matlis duals of top local cohomology modules Proc. Amer. Math. 136 489-498
[7]  
Divaani-Aazar K.(1991)Cofiniteness and vanishing of local cohomology modules Math. Proc. Cambridge Philos. Soc. 110 421-429
[8]  
Naghipour R.(2012)Annihilators of top local cohomology Comm. Algebra 40 542-551
[9]  
Tousi M.(1993)Finiteness properties of local cohomology modules, (an application of D-modules to commutative algebra) Invent. Math. 113 41-55
[10]  
Hellus C.(2012)On the top local cohomology modules J. Algebra 349 342-352