Computing numerically the Green’s function of the half-plane Helmholtz operator with impedance boundary conditions

被引:0
|
作者
Mario Durán
Ricardo Hein
Jean-Claude Nédélec
机构
[1] Pontificia Universidad Católica de Chile,Facultad de Ingeniería
[2] CMAP,undefined
[3] École Polytechnique,undefined
来源
Numerische Mathematik | 2007年 / 107卷
关键词
31A10; 35A08; 35C15; 65N38; 65T50;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we compute numerically the Green’s function of the half-plane Helmholtz operator with impedance boundary conditions. A compactly perturbed half-plane Helmholtz problem is used to motivate this calculation, by treating it through integral equation techniques. These require the knowledge of the calculated Green’s function, and lead to a boundary element discretization. The Green’s function is computed using the inverse Fourier operator of its spectral transform, applying an inverse FFT for the regular part, and removing the singularities analytically. Finally, some numerical results for the Green’s function and for a benchmark resonance problem are shown.
引用
收藏
页码:295 / 314
页数:19
相关论文
共 50 条