Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups

被引:0
作者
Jinping Yang
Jinsheng Liu
机构
[1] Taiyuan University of Technology,College of Mathematics
来源
Advances in Difference Equations | / 2013卷
关键词
discrete Kirchhoff-type problem; variational method; critical point; critical group;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of nontrivial solutions for discrete Kirchhoff-type problems with resonance at both zero and infinity by using variational methods and the computations of critical groups.
引用
收藏
相关论文
共 39 条
[1]  
Perera K(2006)Nontrivial solutions of Kirchhoff type problems via the Yang index J. Differ. Equ 221 246-255
[2]  
Zhang ZT(2013)Resonance problems for Kirchhoff type equations Discrete Contin. Dyn. Syst 5 2139-2154
[3]  
Sun JJ(2006)Nontrivial periodic solutions for asymptotically linear resonant difference problem J. Math. Anal. Appl 322 477-488
[4]  
Tang CL(2009)Multiple positive solutions for resonant difference equations Math. Comput. Model 49 1928-1936
[5]  
Bin HH(2010)Existence and multiplicity of solutions of second-order difference boundary value problems Acta Appl. Math 110 131-152
[6]  
Yu JS(2011)Multiple solutions for boundary value problems of second-order difference equations with resonance J. Math. Anal. Appl 374 187-196
[7]  
Guo ZM(2012)Nontrivial solutions for resonant difference systems via computations of the critical groups J. Math. Anal. Appl 385 60-71
[8]  
Zhu BS(2012)Nontrivial solutions for discrete boundary value problems with multiple resonance via computations of the critical groups Nonlinear Anal 75 3809-3820
[9]  
Yu JS(2012)Nontrivial solutions of a second order difference systems with multiple resonance Appl. Math. Comput 218 9342-9352
[10]  
Zheng B(2013)Existence of non-trivial solutions for resonant difference equations J. Differ. Equ. Appl 19 209-222