Study on early inflationary phase using a new form of non-canonical scalar field model

被引:0
作者
Mithun Bairagi
Amitava Choudhuri
机构
[1] The University of Burdwan,Department of Physics
来源
General Relativity and Gravitation | 2021年 / 53卷
关键词
Non-canonical scalar field model; Lie symmetry; Attractor solution; Inflationary Phase;
D O I
暂无
中图分类号
学科分类号
摘要
We study the inflationary phase of the early universe as modeled by a non-canonical scalar field. The homogeneous scalar field equation is derived from a Lagrangian density containing a new form of non-canonical kinetic term and a general potential function. The Lie symmetry is studied and a one parameter Lie point symmetry for the homogeneous scalar field equation is found. We use Lie symmetry generator to construct the exact analytical group invariant closed-form solution of the homogeneous scalar field equation without applying any slow-roll approximation from invariant curve condition. The solution thus obtained is seen to be consistent with the Friedmann equations subject to constraint conditions on the potential parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. In this scenario, we obtain the values for various inflationary parameters and make useful checks on the observational constraints on the parameters from Planck data by imposing a set of bounds on the parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of the potential. The results for scalar spectral index (nS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_S$$\end{document}) and tensor-to-scalar ratio (r) presented in the (nS,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_S,\,r)$$\end{document} plane in the background of Planck2015 and Planck2018 data are in good agreement with cosmological observations. We find r∼10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\sim 10^{-3}$$\end{document}, the targeted value of r that will be detected by the future CMB observation such as LiteBIRD. Interestingly, most significant primordial non-Gaussianity is also achieved. For theoretical completeness of our non-canonical model, we obtain the allowed parameter space in which the ghosts and Laplacian instabilities are absent. We apply the formulas for slow-roll parameter to explain exit from the inflationary phase using the general potential. We also treat the non-canonical scalar field model equation by the dynamical system theory to provide useful checks on the stability of the critical points and show that the group invariant non-canonical inflationary solution is stable attractor in the phase space.
引用
收藏
相关论文
共 84 条
[1]  
Armendariz-Picon C(1999)LiteBIRD: mission overview and focal plane layout Phys. Lett. B 458 209-undefined
[2]  
Damour T(2012)The primordial inflation explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations JCAP 1208 018-undefined
[3]  
Mukhanov VF(2001)Exploring cosmic origins with CORE: inflation Phys. Rev. D 63 103510-undefined
[4]  
Unnikrishnan S(2020)undefined Gravit. Cosmol. 26 326-undefined
[5]  
Sahni V(1985)undefined Phys. Rev. D 32 1316-undefined
[6]  
Toporensky A(1987)undefined Nucl. Phys. B 244 541-undefined
[7]  
Armendariz-Picon C(2018)undefined Eur. Phys. J. Plus 133 545-undefined
[8]  
Mukhanov V(1990)undefined Phys. Lett. B 235 40-undefined
[9]  
Bairagi M(1993)undefined Phys. Rev. D 47 5219-undefined
[10]  
Choudhuri A(2003)undefined JHEP 0305 013-undefined